Publications by authors named "van der Kuur J"

We report on the x-ray background rate measured with transition-edge sensors (TES) micro-calorimeters under frequency-domain multiplexing (FDM) readout as a possible technology for future experiments aiming at a direct detection of axion-like particles. Future axion helioscopes will make use of large magnets to convert axions into photons in the keV range and x-ray detectors to observe them. To achieve this, a detector array with high spectral performance and extremely low background is necessary.

View Article and Find Full Text PDF

We demonstrate multiplexed readout of 43 transition edge sensor (TES) bolometers operating at 90 mK using a frequency division multiplexing (FDM) readout chain with bias frequencies ranging from 1 to 3.5 MHz and a typical frequency spacing of 32 kHz. We improve the previously reported performance of our FDM system by two important steps.

View Article and Find Full Text PDF

The Transition-Edge Sensor (TES) is an extremely sensitive device, which is used to measure the energy of individual x-ray photons. For astronomical spectrometry applications, SRON develops a frequency domain multiplexing readout system for kilopixel arrays of such TESs. Each TES is voltage biased at a specific frequency in the range of 1-5 MHz.

View Article and Find Full Text PDF

In the frequency-domain multiplexing (FDM) scheme, transition-edge sensors (TESs) are individually coupled to superconducting LC filters and AC biased at MHz frequencies through a common readout line. To make efficient use of the available readout bandwidth and to minimize the effect of non-linearities, the LC resonators are usually designed to be on a regular grid. The lithographic processes, however, pose a limit on the accuracy of the effective filter resonance frequencies.

View Article and Find Full Text PDF

We have characterized and mapped the electrical cross talk (ECT) of a frequency division multiplexing (FDM) system with a transition edge sensor (TES) bolometer array, which is intended for space applications. By adding a small modulation at 120 Hz to the AC bias voltage of one bolometer and measuring the cross talk response in the current noise spectra of the others simultaneously, we have for the first time mapped the ECT level of 61 pixels with a nominal frequency spacing of 32 kHz in a 61 × 61 matrix and a carrier frequency ranging from 1 MHz to 4 MHz. We find that about 94% of the pixels show an ECT level of less than 0.

View Article and Find Full Text PDF

Dilution and adiabatic demagnetization refrigerators based on pulse tube cryocoolers are nowadays used in many low temperature physics experiments, such as atomic force and scanning tunneling microscopy, quantum computing, radiation detectors, and many others. A pulse tube refrigerator greatly simplifies the laboratory activities being a cryogen-free system. The major disadvantage of a pulse tube cooler is the high level of mechanical vibrations at the warm and cold interfaces that could substantially affect the performance of very sensitive cryogenic instruments.

View Article and Find Full Text PDF

At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Δ =3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel.

View Article and Find Full Text PDF