Infrared four-wave mixing experiments performed upon deuterated amorphous silicon layers (a-Si:D) reveal profound differences in the dynamics of Si-D stretch vibrations compared to those of analogous Si-H vibrational modes in hydrogenated amorphous silicon (a-Si:H). Remarkably, transient-grating measurements of the population decay rate of the Si-D vibrations show single-exponential decay directly into collective modes of the a-Si host, bypassing the local bending modes of the defect into which the Si-H vibrations decay. Photon-echo measurements of the vibrational dephasing suggest at low temperature contributions from TO nonequilibrium phonons and at elevated temperatures elastic phonon scattering of TA phonons.
View Article and Find Full Text PDFWe present results of the first vibrational photon-echo, transient-grating, and temperature dependent transient-bleaching experiments on a-Si:H. Using these techniques, and the infrared light of a free electron laser, the vibrational population decay and phase relaxation of the Si-H stretching mode were investigated. Careful analysis of the data indicates that the vibrational energy relaxes directly into Si-H bending modes and Si phonons, with a distribution of rates determined by the amorphous host.
View Article and Find Full Text PDF