Publications by authors named "Zhongming Liu"

Introduction: Gastrointestinal (GI) magnetic resonance imaging (MRI) enables simultaneous assessment of gastric peristalsis, emptying, and intestinal filling and transit. However, GI MRI in animals typically requires anesthesia, which complicates physiology and confounds interpretation and translation to humans. This study aimed to establish GI MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions.

View Article and Find Full Text PDF

Handmade papers, as carriers of paper-based cultural relics, have played a crucial role in the development of human culture, knowledge, and civilization. Understanding the intricate relationship between the structural properties and degradation mechanisms of handmade papers is essential for the conservation of historical documents. In this work, an artificial dry-heat-accelerated aging method was used to investigate the interplay among the mechanical properties of paper, the degree of polymerization (DP) of cellulose, the chemical composition, the hydrogen bond strength, the crystallinity, and the degree of hornification for paper fibers.

View Article and Find Full Text PDF

Introduction: Gastrointestinal (GI) magnetic resonance imaging (MRI) can simultaneously capture gastric peristalsis, emptying, and intestinal filling and transit. Performing GI MRI with animals requires anesthesia, which complicates physiology and confounds interpretation and translation from animals to humans. This study aims to enable MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions.

View Article and Find Full Text PDF

Humans actively observe the visual surroundings by focusing on salient objects and ignoring trivial details. However, computer vision models based on convolutional neural networks (CNN) often analyze visual input all at once through a single feedforward pass. In this study, we designed a dual-stream vision model inspired by the human brain.

View Article and Find Full Text PDF

BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood.

View Article and Find Full Text PDF

The stomach's ability to store, mix, propel, and empty its content requires highly coordinated motor functions. However, current diagnostic tools cannot simultaneously assess these motor processes. This study aimed to use magnetic resonance imaging (MRI) to map multifaceted gastric motor functions, including accommodation, tonic and peristaltic contractions, and emptying, through a single noninvasive experiment for both humans and rats.

View Article and Find Full Text PDF

The high energy density and robust cycle properties of lithium-ion batteries contribute to their extensive range of applications. Polyolefin separators are often used for the purpose of storing electrolytes, hence ensuring the efficient internal ion transport. Nevertheless, the electrochemical performance of lithium-ion batteries is constrained by its limited interaction with electrolytes and poor capacity for cation transport.

View Article and Find Full Text PDF

To mitigate the continued impact of SARS-CoV-2, influenza A, and influenza B viruses on human health, a smartphone-based point-of-care testing (POCT) system was designed to detect respiratory pathogens through a nucleic acid test. This compact, light-weight, highly automated, and universal system enables the differential diagnosis of SARS-CoV-2, influenza A, and influenza B in approximately 30 min in a single-tube reaction. Numerous hospitals and disease control and prevention center assessed the triple POCT system's detection threshold, sensitivity, specificity, and stability, and have concluded that all the assessments were comparable to those of fluorescent quantitative polymerase chain reaction (PCR)-based testing.

View Article and Find Full Text PDF

Neural regulation of gastric motility occurs partly through the regulation of gastric bioelectrical slow waves (SWs) and phasic contractions. The interaction of the tissues and organs involved in this regulatory process is complex. We sought to infer the relative importance of cellular mechanisms in inhibitory neural regulation of the stomach by enteric neurons and the interaction of inhibitory and excitatory electrical field stimulation.

View Article and Find Full Text PDF

The stomach is the primary reservoir of the gastrointestinal tract, where ingested content is broken down into small particles. Coordinated relaxation and contraction is essential for rhythmic motility and digestion, but how the muscle motor innervation is organized to provide appropriate graded regional control is not established. In this study, we recorded neuromuscular transmission to the circular muscle using intracellular microelectrodes to investigate the spread of the influence of intrinsic motor neurons.

View Article and Find Full Text PDF

Introduction: The vagus nerve, the primary neural pathway mediating brain-body interactions, plays an essential role in transmitting bodily signals to the brain. Despite its significance, our understanding of the detailed organization and functionality of vagal afferent projections remains incomplete.

Methods: In this study, we utilized manganese-enhanced magnetic resonance imaging (MEMRI) as a non-invasive and method for tracing vagal nerve projections to the brainstem and assessing their functional dependence on cervical vagus nerve stimulation (VNS).

View Article and Find Full Text PDF

Electromagnetic (EM) pollution has become a serious problem in modern society as it affects human lives. The fabrication of strong and highly flexible materials for electromagnetic interference (EMI) shielding applications is extremely urgent. Herein, a MXene TiCT/FeO & bacterial cellulose (BC)/FeO&Methyltrimethoxysilane (MTMS) flexible hydrophobic electromagnetic shielding film (SBTF, X and Y were the number of layers of BC/FeO and the layers of TiCT/FeO), was fabricated.

View Article and Find Full Text PDF

Objective: Gastrointestinal magnetic resonance imaging (MRI) provides rich spatiotemporal data about the movement of the food inside the stomach, but does not directly report muscular activity on the stomach wall. Here we describe a novel approach to characterize the motility of the stomach wall that drives the volumetric changes of the ingesta.

Methods: A neural ordinary differential equation was optimized to model a diffeomorphic flow that ascribed the deformation of the stomach wall to a continuous biomechanical process.

View Article and Find Full Text PDF

The common occurrence of gastric disorders, the accelerating emphasis on the role of the gut-brain axis, and development of realistic, predictive models of gastric function, all place emphasis on increasing understanding of the stomach and its control. However, the ways that regions of the stomach have been described anatomically, physiologically, and histologically do not align well. Mammalian single compartment stomachs can be considered as having four anatomical regions fundus, corpus, antrum, and pyloric sphincter.

View Article and Find Full Text PDF

Resting-state functional connectivity (rsFC) has been used to assess the effect of vision loss on brain plasticity. With the emergence of vision restoration therapies, rsFC analysis provides a means to assess the functional changes following sight restoration. Our study demonstrates a partial reversal of blindness-induced rsFC changes in Argus II retinal prosthesis patients compared to those with severe retinitis pigmentosa (RP).

View Article and Find Full Text PDF

Interactions between the brain and the stomach shape both cognitive and digestive functions. Recent human studies report spontaneous synchronization between brain activity and gastric slow waves in the resting state. However, this finding has not been replicated in any animal models.

View Article and Find Full Text PDF

BIG, a regulator of polar auxin transport, is necessary to regulate the growth and development of Arabidopsis. Although mutations in the gene cause severe root developmental defects, the exact mechanism remains unclear. Here, we report that disruption of the gene resulted in decreased quiescent center (QC) activity and columella cell numbers, which was accompanied by the downregulation of () gene expression.

View Article and Find Full Text PDF

Hydrophobic coatings are widely used in a variety of materials surfaces. However, it remains a great challenge for the non-toxic and environmentally-friendly production of hydrophobic coatings. Herein, two nano-scale spherical lignin/SiO composite particles are synthesized based on the electrostatic interaction and the steric hindrance effect inspired by the self-protection of straw.

View Article and Find Full Text PDF

Temperature/pH-responsive carboxymethyl cellulose/poly (-isopropyl acrylamide) interpenetrating polymer network (IPN) aerogels (CMC/Ca/PNIPAM aerogels) were developed as a novel drug delivery system. The aerogel has a highly open network structure with a porosity of more than 90%, which provides convenient conditions for drug release. The morphology and structure of the CMC/Ca/PNIPAM aerogels were characterized via scanning electron microscopy (SEM), Micro-CT, X-ray photoelectron spectroscopy (XPS), pore size analysis, and cytotoxicity analysis.

View Article and Find Full Text PDF

The strengths, directions and coupling of the movements of the stomach depend on the organisation of its musculature. Although the rat has been used as a model species to study gastric function, there is no detailed, quantitative study of the arrangement of the gastric muscles in rat. Here we provide a descriptive and quantitative account, and compare it with human gastric anatomy.

View Article and Find Full Text PDF

Gastric electrical stimulation (GES) is a bioelectric intervention for gastroparesis, obesity, and other functional gastrointestinal disorders. In a potential mechanism of action, GES activates the nerve endings of vagal afferent neurons and induces the vago-vagal reflex through the nucleus tractus solitarius (NTS) in the brainstem. However, it is unclear where and how to stimulate in order to optimize the vagal afferent responses.

View Article and Find Full Text PDF

Speech perception is a central component of social communication. Although principally an auditory process, accurate speech perception in everyday settings is supported by meaningful information extracted from visual cues. Visual speech modulates activity in cortical areas subserving auditory speech perception including the superior temporal gyrus (STG).

View Article and Find Full Text PDF

Background: Time-sequenced magnetic resonance imaging (MRI) of the stomach is an emerging technique for non-invasive assessment of gastric emptying and motility. However, an automated and systematic image processing pipeline for analyzing dynamic 3D (ie, 4D) gastric MRI data has not been established. This study uses an MRI protocol for imaging the stomach with high spatiotemporal resolution and provides a pipeline for assessing gastric emptying and motility.

View Article and Find Full Text PDF

Movies, audio stories, and virtual reality are increasingly used as stimuli for functional brain imaging. Such naturalistic paradigms are in sharp contrast to the tradition of experimental reductionism in neuroscience research. Being complex, dynamic, and diverse, naturalistic stimuli set up a more ecologically relevant condition and induce highly reproducible brain responses across a wide range of spatiotemporal scales.

View Article and Find Full Text PDF

Resting state functional magnetic resonance imaging (rsfMRI) data exhibits complex but structured patterns. However, the underlying origins are unclear and entangled in rsfMRI data. Here we establish a variational auto-encoder, as a generative model trainable with unsupervised learning, to disentangle the unknown sources of rsfMRI activity.

View Article and Find Full Text PDF