Publications by authors named "Zhiying Long"

Dynamic functional connectivity (DFC) analysis using functional magnetic resonance imaging (fMRI) technology has attracted increasing attention in revealing brain dynamics in recent years. Although the nonnegative matrix factorization (NMF) method was applied to dynamic subgraph analysis to reveal brain dynamics, its application in DFC analysis was largely limited due to its nonnegative constraint on the input data. This study proposed the extended NMF (eNMF) method that allowed the input matrix and decomposed basis matrix to have negative values without altering the NMF algorithm.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a common neurodegenerative dementia, characterized by abnormal dynamic functional connectivity (DFC). Traditional DFC analysis, assuming linear brain dynamics, may neglect the complexity of the brain's nonlinear interactions. Energy landscape analysis offers a holistic, nonlinear perspective to investigate brain network attractor dynamics, which was applied to resting-state fMRI data for AD in this study.

View Article and Find Full Text PDF

The human brain can be regarded as a complex network with interacting connections between brain regions. Complex brain network analyses have been widely applied to functional magnetic resonance imaging (fMRI) data and have revealed the existence of community structures in brain networks. The identification of communities may provide insight into understanding the topological functions of brain networks.

View Article and Find Full Text PDF

Unlabelled: Dynamic functional connectivity (DFC) analysis has been widely applied to functional magnetic resonance imaging (fMRI) data to reveal the time-varying functional interactions between brain regions. Although the sliding window (SW) method is popular for DFC analysis, the selection of window length is hard, and the temporal resolution is limited by the window length. The hidden Markov model (HMM) without the limitation of window length has been proven to be able to estimate time-varying brain states from fMRI data.

View Article and Find Full Text PDF

Stereoscopic displays can induce visual discomfort despite their wide application. Electroencephalography (EEG) technology has been applied to assess 3D visual discomfort, because it can capture brain activities with high temporal resolution. Previous studies explored the frequency and temporal features relevant to visual discomfort in EEG data.

View Article and Find Full Text PDF

Subcortical ischemic vascular disease (SIVD) can cause cognitive impairment and affect the static functional connectivity of resting functional magnetic resonance imaging (fMRI). Numerous previous studies have demonstrated that functional connectivities (FCs) fluctuate dynamically over time. However, little is known about the impact of cognitive impairment on brain dynamic functional connectivity (DFC) in SIVD patients with MCI.

View Article and Find Full Text PDF

Neurofeedback of real-time functional magnetic resonance imaging (rtfMRI) can enable people to self-regulate motor-related brain regions and lead to alteration of motor performance and functional connectivity (FC) underlying motor execution tasks. Numerous studies suggest that FCs dynamically fluctuate over time. However, little is known about the impact of neurofeedback training of the motor-related region on the dynamic characteristics of FC underlying motor execution tasks.

View Article and Find Full Text PDF

Several studies demonstrated that functional magnetic resonance imaging (fMRI) signals in early visual cortex can be used to reconstruct 2-dimensional (2D) visual contents. However, it remains unknown how to reconstruct 3-dimensional (3D) visual stimuli from fMRI signals in visual cortex. 3D visual stimuli contain 2D visual features and depth information.

View Article and Find Full Text PDF

Background: Online dictionary learning (ODL) has been applied to extract brain networks from functional magnetic resonance imaging (fMRI) data in recent year. Moreover, the supervised dictionary learning (SDL) that fixed the task stimulus curves as predefined atoms was proposed to improve ODL for functional networks separation. However, SDL cannot estimate the real time courses underlying the brain networks and cannot be applied to the inter-network connectivity analysis.

View Article and Find Full Text PDF

Multivariate analysis methods have been widely applied to decode brain states from functional magnetic resonance imaging (fMRI) data. Among various multivariate analysis methods, partial least squares regression (PLSR) is often used to select relevant features for decoding brain states. However, PLSR is seldom directly used as a classifier to decode brain states from fMRI data.

View Article and Find Full Text PDF

Perceiving disparities is the intuitive basis for our understanding of the physical world. Although many electrophysiology studies have revealed the disparity-tuning characteristics of the neurons in the visual areas of the macaque brain, neuron population responses to disparity processing have seldom been investigated. Many disparity studies using functional magnetic resonance imaging (fMRI) have revealed the disparity-selective visual areas in the human brain.

View Article and Find Full Text PDF

Background: Although independent component analysis (ICA) has been widely applied to functional magnetic resonance imaging (fMRI) data to reveal spatially independent brain networks, the order indetermination of ICA leads to the problem of target component selection. The temporally constrained independent component analysis (TCICA) is capable of automatically extracting the desired spatially independent components by adding the temporal prior information of the task to the mixing matrix for fMRI data analysis. However, the TCICA method can only extract a single component that tends to be a mix of multiple task-related components when there exist several independent components related to one task.

View Article and Find Full Text PDF

Multivariate pattern analysis techniques have been widely applied to decode brain states using functional magnetic resonance imaging (fMRI). Among various multivariate pattern analysis methods, sparse representation classifier (SRC) exhibit state-of-the-art classification performance for image classification. However, SRC has rarely been applied to fMRI-based decoding.

View Article and Find Full Text PDF

Multivariate classification techniques have been widely applied to decode brain states using functional magnetic resonance imaging (fMRI). Due to variabilities in fMRI data and the limitation of the collection of human fMRI data, it is not easy to train an efficient and robust supervised-learning classifier for fMRI data. Among various classification techniques, sparse representation classifier (SRC) exhibits a state-of-the-art classification performance in image classification.

View Article and Find Full Text PDF

Background: Binocular disparity provides a powerful cue for depth perception in a stereoscopic environment. Despite increasing knowledge of the cortical areas that process disparity from neuroimaging studies, the neural mechanism underlying disparity sign processing [crossed disparity (CD)/uncrossed disparity (UD)] is still poorly understood. In the present study, functional magnetic resonance imaging (fMRI) was used to explore different neural features that are relevant to disparity-sign processing.

View Article and Find Full Text PDF

Many neuroscience studies have found brain differences lead to the gender differences in behavior and cognitive ability. Functional connectivity is a common and effective measure to characterize brain. Most current studies based on fMRI functional connectivity basically assumed temporal stationarity across the duration of scanning, and thought that brain functional connectivity was constant in a certain period of time.

View Article and Find Full Text PDF

Objective: Multivariate pattern analysis methods have been widely applied to functional magnetic resonance imaging (fMRI) data to decode brain states. Due to the "high features, low samples" in fMRI data, machine learning methods have been widely regularized using various regularizations to avoid overfitting. Both total variation (TV) using the gradients of images and Euler's elastica (EE) using the gradient and the curvature of images are the two popular regulations with spatial structures.

View Article and Find Full Text PDF

For patients with mild cognitive impairment (MCI), the likelihood of progression to probable Alzheimer's disease (AD) is important not only for individual patient care, but also for the identification of participants in clinical trial, so as to provide early interventions. Biomarkers based on various neuroimaging modalities could offer complementary information regarding different aspects of disease progression. The current study adopted a weighted multi-modality sparse representation-based classification method to combine data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, from three imaging modalities: Volumetric magnetic resonance imaging (MRI), fluorodeoxyglucose (FDG) positron emission tomography (PET), and florbetapir PET.

View Article and Find Full Text PDF

Background: As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints.

New Method: In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA.

View Article and Find Full Text PDF

An increasing number of studies using real-time fMRI neurofeedback have demonstrated that successful regulation of neural activity is possible in various brain regions. Since these studies focused on the regulated region(s), little is known about the target-independent mechanisms associated with neurofeedback-guided control of brain activation, i.e.

View Article and Find Full Text PDF

Decoding brain states from response patterns with multivariate pattern recognition techniques is a popular method for detecting multivoxel patterns of brain activation. These patterns are informative with respect to a subject's perceptual or cognitive states. Linear discriminant analysis (LDA) cannot be directly applied to fMRI data analysis because of the "few samples and large features" nature of functional magnetic resonance imaging (fMRI) data.

View Article and Find Full Text PDF

Independent component analysis (ICA) has been widely applied to functional magnetic resonance imaging (fMRI) data analysis. Although ICA assumes that the sources underlying data are statistically independent, it usually ignores sources' additional properties, such as sparsity. In this study, we propose a two-step super-GaussianICA (2SGICA) method that incorporates the sparse prior of the sources into the ICA model.

View Article and Find Full Text PDF

Background: Bipolar depression (BD) is characterized by alternating episodes of depression and mania. Patients who spend the majority of their time in episodes of depression rather than mania are often misdiagnosed with unipolar depression (UD) that only exhibits depressive episodes. It would be important to explore the construction of more objective biomarkers which can be used to more accurately differentiate BD and UD.

View Article and Find Full Text PDF