Publications by authors named "Zhiwen Liu"

Article Synopsis
  • Parkinson's disease (PD) is increasing globally due to aging, but effective treatments for its motor and cognitive symptoms are still lacking, with neuroinflammation and neuronal apoptosis worsening these conditions.
  • The study developed minocycline-loaded iron oxide nanoparticles (FeO-MIN NPs) that can cross the blood-brain barrier using near-infrared (NIR) irradiation, allowing targeted delivery to the brain.
  • The FeO-MIN NPs showed strong anti-inflammatory and antioxidative properties, protecting neurons and improving motor function and cognitive ability in PD mice, indicating their potential as a therapeutic option.
View Article and Find Full Text PDF

Background: The role of vitamin C as an antioxidant in guarding against osteoporosis in adults is still debated. This research employs both a cross-sectional study and a two-sample bidirectional Mendelian randomization (MR) analysis to explore how serum vitamin C levels correlate with the incidence of osteoporosis among adults.

Methods: In this study, we utilized data from the National Health and Nutrition Examination Survey (NHANES) database for the years 2003-2006, and 2017-2018 to conduct both a cross-sectional analysis and MR to investigate the relationship between serum vitamin C levels and the risk of osteoporosis in adults.

View Article and Find Full Text PDF

Catharanthus roseus is a highly relevant model for investigating plant defense mechanisms and the biosynthesis of therapeutically valuable compounds, including terpenoid indole alkaloids (TIAs). It has been demonstrated that beneficial microbial interactions can regulate TIA biosynthesis in C. roseus, highlighting the need to fully comprehend the molecular mechanisms involved to efficiently implement eco-friendly strategies.

View Article and Find Full Text PDF

Electrodynamic therapy (EDT) is a promising alternative approach for antibacterial therapy, as reactive oxygen species (ROS) are produced efficiently in response to an electric field without relying on endogenous HO and O. However, the inherent toxicity of metallic catalysts and numerous bacterial toxins during the therapeutic process still hinder its development. Herein, biomimetic metal-organic (MOF@EV) nanosponges composed of ginger-derived extracellular vesicles (EVs), and electrodynamic metal-organic frameworks (MOFs) are developed for the eradication of bacterial infections and the absorption of toxins.

View Article and Find Full Text PDF

Introduction: Sepsis is the leading contributor to acute kidney injury (AKI), responsible for 45-70% of AKI occurrences. Despite this, septic AKI is a highly multifactorial and complex condition, and our grasp of its pathogenesis is still not fully developed. Consequently, there remains a significant gap in effective diagnostic and therapeutic strategies for septic AKI.

View Article and Find Full Text PDF

Background: Endoleaks are common complications after endovascular aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA). Computed tomographic angiography (CTA)/digital subtraction angiography (DSA) is considered the gold standard for evaluating contrast-enhanced ultrasound (CEUS) accuracy in the detection and classification of endoleaks. In recent years, CEUS has been widely used in this field.

View Article and Find Full Text PDF

Light fields carry a wealth of information, including intensity, spectrum, and polarization. However, standard cameras capture only the intensity, disregarding other valuable information. While hyperspectral and polarimetric imaging systems capture spectral and polarization information, respectively, in addition to intensity, they are often bulky, slow, and costly.

View Article and Find Full Text PDF

Sepsis represents a primary cause of acute kidney injury (AKI), yet the underlying mechanisms of septic AKI remain poorly understood. Thus, there exists an urgent need for a deeper understanding of its underlying mechanisms and the development of effective therapeutic strategies. Our study reveals a notable induction in microRNA-202-5p (miR-202-5p) levels within renal tubular cells in septic AKI both in vivo and in vitro models.

View Article and Find Full Text PDF

The combination of nanoparticles and tumor-targeting bacteria for cancer immunotherapy can overcome the shortcomings of poor nanoparticle accumulation, limited penetration, and restricted distribution. However, it remains a great challenge for the hybrid system to improve therapeutic efficacy through the simultaneous and controllable regulation of immune cells and tumor cells. Herein, a hybrid therapeutic platform is rationally designed to achieve immune cascade-augmented cancer immunotherapy.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression by inhibiting the translation of their specific target messenger RNAs. To date, numerous studies have demonstrated changes in the expression of miRNAs in the kidneys throughout the progression of both acute kidney injury (AKI) and chronic kidney disease (CKD) in both human patients and experimental models. The role of specific microRNAs in the pathogenesis of kidney diseases has also been demonstrated.

View Article and Find Full Text PDF

Spiral inorganic perovskite nanowires (NWs) possess unique morphologies and properties that allow them highly attractive for applications in optoelectronic and catalytic fields. In popular solution-based synthesis methodology, however, challenges persist in simultaneously achieving precise and facile control over morphological twisting and fantastic carrier lifetimes. Here, a cooperative strategy of concurrently employing selective etching and ligand engineering is applied to facilitate the formation of spiral CsPbBr perovskite NWs with an ultralong carrier lifetime of ≈2 µs.

View Article and Find Full Text PDF

Objective: This retrospective study using claims data compared demographics, clinical characteristics, treatment patterns, healthcare resource utilization, and clinical outcomes in Black and White patients with pulmonary arterial hypertension (PAH) in the United States.

Methods: Patients (aged ≥18 years) had ≥1 pharmacy claim for PAH medication, ≥6 months' continuous healthcare plan enrollment, ≥1 inpatient/outpatient medical claim with a pulmonary hypertension diagnosis ≤6 months before first PAH medication, and race recorded.

Results: This analysis included 836 Black and 2896 White patients.

View Article and Find Full Text PDF

The assessment of compound blood-brain barrier (BBB) permeability poses a significant challenge in the discovery of drugs targeting the central nervous system. Conventional experimental approaches to measure BBB permeability are labor-intensive, cost-ineffective, and time-consuming. In this study, we constructed six machine learning classification models by combining various machine learning algorithms and molecular representations.

View Article and Find Full Text PDF

Background: The genus Celastrus is an important medicinal plant resource. The similarity of morphology and the lack of complete chloroplast genome analysis have significantly impeded the exploration of species identification, molecular evolution and phylogeny of Celastrus.

Purpose: In order to resolve the phylogenic controversy of Celastrus species, the chloroplast genome comparative analysis was performed to provide genetic evidence.

View Article and Find Full Text PDF

High-dielectric-constant elastomers always play a critical role in the development of wearable electronics for actuation, energy storage, and sensing; therefore, there is an urgent need for effective strategies to enhance dielectric constants. The present methods mainly involve adding inorganic or conductive fillers to the polymer elastomers, however, the addition of fillers causes a series of problems, such as large dielectric loss, increased modulus, and deteriorating interface conditions. Here, the elastification of relaxor ferroelectric polymers is investigated through slight cross-linking, aiming to obtain intrinsic elastomers with high-dielectric constants.

View Article and Find Full Text PDF

Objective: The aberrant mobilization and activation of various T lymphocyte subpopulations play a pivotal role in the pathogenesis of diabetic kidney disease (DKD), yet the regulatory mechanisms underlying these processes remain poorly understood. Our study is premised on the hypothesis that the dysregulation of immune checkpoint molecules on T lymphocytes disrupts kidney homeostasis, instigates pathological inflammation, and promotes DKD progression.

Methods: A total of 360 adult patients with DKD were recruited for this study.

View Article and Find Full Text PDF

Diabetic foot ulcer (DFU) is a highly morbid complication in patients with diabetes mellitus, necessitating the development of innovative pharmaceuticals to address unmet medical needs. Sodium ion (Na) is a well-established mediator for membrane potential and osmotic equilibrium. Recently, Na transporters have been identified as a functional regulator of regeneration.

View Article and Find Full Text PDF

α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine.

View Article and Find Full Text PDF

Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate.

View Article and Find Full Text PDF

The airborne star tracker is crucial in aircraft navigation systems, with its tracking performance directly impacting navigation accuracy. Under airborne conditions, the performance of its tracking control will be compromised by various disturbances. Moreover, the limitation in computational resources is another issue that must be addressed.

View Article and Find Full Text PDF

The vehicle suspension system is a complex system with multiple variables, nonlinearity and time-varying characteristics, and the traditional variable universe fuzzy PID control algorithm has the problems of over-reliance on expert experience and non-adaptive adjustment of the contracting-expanding factor parameters, which make it difficult to achieve a better control effect. In this paper, the system error e(t) and its change rate ec(t) are introduced into the contracting-expanding factor as dynamic parameters to realize the adaptive adjustment of the contracting-expanding factor parameters, and propose a variable universe fuzzy PID control based on dynamic adjustment functions (VUFP-DAF), which uses the real-time contracting-expanding factor to realize the adaptive adjustment of the fuzzy universe, so as to improve the ride comfort of vehicles. The research results show that the proposed VUFP-DAF has strong adaptability and can effectively improve the ride comfort and handling stability of vehicles under different speeds and road excitations, providing a certain technical basis for the development of the semi-active suspension system.

View Article and Find Full Text PDF

Carbon monoxide (CO) gas therapy demonstrates great potential to induce cancer cell apoptosis and antitumor immune responses, which exhibits tremendous potential in cancer treatment. However, the therapeutic efficacy of CO therapy is inhibited by the immunosuppressive tumor microenvironment (TME). Herein, a facile strategy is proposed to construct hollow-structured rough nanoplatforms to boost antitumor immunity and simultaneously reverse immunosuppression by exploring intrinsic immunomodulatory properties and morphological optimization of nanomaterials.

View Article and Find Full Text PDF

Camptotheca acuminata is one of the primary sources of camptothecin (CPT), which is widely used in the treatment of human malignancies because of its inhibitory activity against DNA topoisomerase I. Although several transcription factors have been identified for regulating CPT biosynthesis in other species, such as Ophiorrhiza pumila, the specific regulatory components controlling CPT biosynthesis in C. acuminata have yet to be definitively determined.

View Article and Find Full Text PDF

WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment.

View Article and Find Full Text PDF

Background: Renal hemodynamic changes in early diabetes occur before the onset of significant structural abnormalities or clinical manifestations, and timely detection of these changes has clinical significance. This study aimed to evaluate renal elasticity and perfusion changes in an early-stage diabetic rat model by shear wave elastography (SWE) and contrast-enhanced ultrasound (CEUS), and to explore the potential correlations between renal elasticity and perfusion parameters.

Methods: A total of 18 male Sprague-Dawley rats were randomly divided into three groups: a control group (group 1, n=6), a diabetic group (group 2, n=6), and a diabetic group receiving drug therapy (group 3, n=6).

View Article and Find Full Text PDF