Neurotherapeutics
November 2024
This study aims to develop a reliable predictive model for assessing intracranial aneurysm (IA) instability by utilizing four-dimensional flow magnetic resonance imaging (4D-Flow MRI) and high-resolution MRI (HR-MRI). Initially, we curated a prospective dataset, dubbed the primary cohort, by aggregating patient data that was consecutively enrolled across two centers from November 2018 to November 2021. Unstable aneurysms were defined as those with symptoms, morphological change or ruptured during follow-up periods.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of age-related dementia. In AD, the death of neurons in the central nervous system is associated with the accumulation of toxic amyloid β peptide (Aβ) and mitochondrial dysfunction. Mitochondria are signal transducers of metabolic and biochemical information, and their impairment can compromise cellular function.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2024
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (e.g., social network analysis and recommender systems), computer vision (e.
View Article and Find Full Text PDFPulmonary infections pose formidable challenges in clinical settings with high mortality rates across all age groups worldwide. Accurate diagnosis and early intervention are crucial to improve patient outcomes. Artificial intelligence (AI) has the capability to mine imaging features specific to different pathogens and fuse multimodal features to reach a synergistic diagnosis, enabling more precise investigation and individualized clinical management.
View Article and Find Full Text PDFMitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer's disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. Here, we discuss the intersection between the molecular pathways linked to both mitochondrial one-carbon metabolism and Alzheimer's disease.
View Article and Find Full Text PDFBackground: This multicenter, double-blinded, randomized controlled trial (RCT) aims to assess the impact of an artificial intelligence (AI)-based model on the efficacy of intracranial aneurysm detection in CT angiography (CTA) and its influence on patients' short-term and long-term outcomes.
Methods: Study design: Prospective, multicenter, double-blinded RCT.
Settings: The model was designed for the automatic detection of intracranial aneurysms from original CTA images.
Mycoplasma pneumonia may lead to hospitalizations and pose life-threatening risks in children. The automated identification of mycoplasma pneumonia from electronic medical records holds significant potential for improving the efficiency of hospital resource allocation. In this study, we proposed a novel method for identifying mycoplasma pneumonia by integrating multi-modal features derived from both free-text descriptions and structured test data in electronic medical records.
View Article and Find Full Text PDFPurpose: Although effective amblyopia treatments are available, treatment outcome is unpredictable, and the condition recurs in up to 25% of the patients. We aimed to evaluate whether a large-scale quantitative contrast sensitivity function (CSF) data source, coupled with machine learning (ML) algorithms, can predict amblyopia treatment response and recurrence in individuals.
Methods: Visual function measures from traditional chart vision acuity (VA) and novel CSF assessments were used as the main predictive variables in the models.
Background Preoperative discrimination of preinvasive, minimally invasive, and invasive adenocarcinoma at CT informs clinical management decisions but may be challenging for classifying pure ground-glass nodules (pGGNs). Deep learning (DL) may improve ternary classification. Purpose To determine whether a strategy that includes an adjudication approach can enhance the performance of DL ternary classification models in predicting the invasiveness of adenocarcinoma at chest CT and maintain performance in classifying pGGNs.
View Article and Find Full Text PDFThis study aimed to assess the performance of a deep learning algorithm in helping radiologist achieve improved efficiency and accuracy in chest radiograph diagnosis. We adopted a deep learning algorithm to concurrently detect the presence of normal findings and 13 different abnormalities in chest radiographs and evaluated its performance in assisting radiologists. Each competing radiologist had to determine the presence or absence of these signs based on the label provided by the AI.
View Article and Find Full Text PDFEarly and accurate diagnosis of focal liver lesions is crucial for effective treatment and prognosis. We developed and validated a fully automated diagnostic system named Liver Artificial Intelligence Diagnosis System (LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of 0.
View Article and Find Full Text PDFPurpose: The explore the added value of peri-calcification regions on contrast-enhanced mammography (CEM) in the differential diagnosis of breast lesions presenting as only calcification on routine mammogram.
Methods: Patients who underwent CEM because of suspicious calcification-only lesions were included. The test set included patients between March 2017 and March 2019, while the validation set was collected between April 2019 and October 2019.
Background: The accurate identification and evaluation of lymph nodes by CT images is of great significance for disease diagnosis, treatment, and prognosis.
Purpose: To assess the lymph nodes' segmentation, size, and station by artificial intelligence (AI) for unenhanced chest CT images and evaluate its value in clinical scenarios.
Material And Methods: This retrospective study proposed an end-to-end Lymph Nodes Analysis System (LNAS) consisting of three models: the Lymph Node Segmentation model (LNS), the Mediastinal Organ Segmentation model (MOS), and the Lymph Node Station Registration model (LNR).
Aims: The increasing resistance to anti-seizure medications (ASMs) and the ambiguous mechanisms of epilepsy highlight the pressing demand for the discovery of pioneering lead compounds. Berberine (BBR) has received significant attention in recent years within the field of chronic metabolic disorders. However, the reports on the treatment of epilepsy with BBR are not systematic and the mechanism remains unclear.
View Article and Find Full Text PDFBackground: This study assessed the diagnostic performance of a deep learning (DL)-based model for differentiating malignant subcentimeter (≤10 mm) solid pulmonary nodules (SSPNs) from benign ones in computed tomography (CT) images compared against radiologists with 10 and 15 years of experience in thoracic imaging (medium-senior seniority).
Methods: Overall, 200 SSPNs (100 benign and 100 malignant) were retrospectively collected. Malignancy was confirmed by pathology, and benignity was confirmed by follow-up or pathology.
Signal Transduct Target Ther
November 2023
There have been hundreds of millions of cases of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the growing population of recovered patients, it is crucial to understand the long-term consequences of the disease and management strategies. Although COVID-19 was initially considered an acute respiratory illness, recent evidence suggests that manifestations including but not limited to those of the cardiovascular, respiratory, neuropsychiatric, gastrointestinal, reproductive, and musculoskeletal systems may persist long after the acute phase.
View Article and Find Full Text PDFBackground: Extremities fractures are a leading cause of death and disability, especially in the elderly. Avulsion fracture are also the most commonly missed diagnosis, and delayed diagnosis leads to higher litigation rates. Therefore, this study evaluates the diagnostic efficiency of the artificial intelligence (AI) model before and after optimization based on computed tomography (CT) images and then compares it with that of radiologists, especially for avulsion fractures.
View Article and Find Full Text PDFIEEE Trans Image Process
October 2023
Compared to unsupervised domain adaptation, semi-supervised domain adaptation (SSDA) aims to significantly improve the classification performance and generalization capability of the model by leveraging the presence of a small amount of labeled data from the target domain. Several SSDA approaches have been developed to enable semantic-aligned feature confusion between labeled (or pseudo labeled) samples across domains; nevertheless, owing to the scarcity of semantic label information of the target domain, they were arduous to fully realize their potential. In this study, we propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment, which enables cross-domain semantic alignment by mandating semantic transfer from labeled data of both the source and target domains to unlabeled target samples.
View Article and Find Full Text PDFPoor sleep is a major public health problem with implications for a wide range of critical health outcomes. Insomnia and sleep apnoea are the two most common causes of poor sleep, and recent studies have shown that these disorders frequently co-occur. Comorbid insomnia and sleep apnoea can substantially impair quality of life and increase the overall risk of mortality.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
August 2024
Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists.
View Article and Find Full Text PDFObjective: Post-hepatectomy liver failure (PHLF) remains clinical challenges after major hepatectomy. The aim of this study was to establish and validate a deep learning model to predict PHLF after hemihepatectomy using preoperative contrast-enhancedcomputed tomography with three phases (Non-contrast, arterial phase and venous phase).
Methods: 265 patients undergoing hemihepatectomy in Sir Run Run Shaw Hospital were enrolled in this study.
IEEE Trans Image Process
July 2023
Transformer, the model of choice for natural language processing, has drawn scant attention from the medical imaging community. Given the ability to exploit long-term dependencies, transformers are promising to help atypical convolutional neural networks to learn more contextualized visual representations. However, most of recently proposed transformer-based segmentation approaches simply treated transformers as assisted modules to help encode global context into convolutional representations.
View Article and Find Full Text PDF