Publications by authors named "Yiyu Dong"

Article Synopsis
  • Hürthle cell carcinoma (HCC) is a rare thyroid cancer with a tendency for metastasis, poor treatment options, and unfavorable outcomes, necessitating a better understanding of its immune features and responses to therapies.
  • RNA sequencing of HCC tumors revealed low immune infiltration and a link between tumor genetic characteristics like mutation burden and immune activity, with aggressive forms showing even less immune presence.
  • The study identified specific immune vulnerabilities related to HCC recurrence, highlighting how genetic alterations and metabolic changes contribute to an immune-depleted environment in these tumors.
View Article and Find Full Text PDF

Hürthle cell carcinomas (HCCs) display two exceptional genotypes: near-homoplasmic mutation of mitochondrial DNA (mtDNA) and genome-wide loss of heterozygosity (gLOH). To understand the phenotypic consequences of these genetic alterations, we analyzed genomic, metabolomic, and immunophenotypic data of HCC and other thyroid cancers. Both mtDNA mutations and profound depletion of citrate pools are common in HCC and other thyroid malignancies, suggesting that thyroid cancers are broadly equipped to survive tricarboxylic acid cycle impairment, whereas metabolites in the reduced form of NADH-dependent lysine degradation pathway were elevated exclusively in HCC.

View Article and Find Full Text PDF

SETD2 is a histone H3 lysine 36 (H3K36) trimethyltransferase that is mutated with high prevalence (13%) in clear cell renal cell carcinoma (ccRCC). Genomic profiling of primary ccRCC tumors reveals a positive correlation between SETD2 mutations and metastasis. However, whether and how SETD2 loss promotes metastasis remains unclear.

View Article and Find Full Text PDF

Hurthle cell carcinomas (HCCs) are refractory to radioactive iodine and unresponsive to chemotherapeutic agents, with a fatality rate that is the highest among all types of thyroid cancer after anaplastic thyroid cancer. Our previous study on the genomic landscape of HCCs identified a high incidence of disruptions of mTOR pathway effectors. Here, we report a detailed analysis of mTOR signaling in cell line and patient-derived xenograft mouse models of HCCs.

View Article and Find Full Text PDF

Adoptive cell transfer of targeted chimeric antigen receptor (CAR) T cells has emerged as a highly promising cancer therapy. The pharmacodynamic action or CAR T cells is closely related to their pharmacokinetic profile; because of this as well as the risk of non-specific action, it is important to monitor their biodistribution and fate following infusion. To this end, we developed a dual-modal PET/near infrared fluorescent (NIRF) nanoparticle-based imaging agent for non-genomic labeling of human CAR T cells.

View Article and Find Full Text PDF

Oncogenic mutations in the epidermal growth factor receptor () occur frequently in patients with lung cancer. These mutations may serve as critical predictive biomarkers in patients with non-small cell lung cancer (NSCLC). Among them, exon 18-25 kinase domain duplication (-KDD) mutations have been identified as a novel gene subtype in NSCLC.

View Article and Find Full Text PDF

Treatment paradigms for patients with upper tract urothelial carcinoma (UTUC) are typically extrapolated from studies of bladder cancer despite their distinct clinical and molecular characteristics. The advancement of UTUC research is hampered by the lack of disease-specific models. Here, we report the establishment of patient derived xenograft (PDX) and cell line models that reflect the genomic and biological heterogeneity of the human disease.

View Article and Find Full Text PDF

Sarcomatoid clear-cell renal cell carcinomas (sRCC) are associated with dismal prognosis. Genomic alterations associated with sarcomatoid dedifferentiation are poorly characterized. We sought to define the genomic landscape of sRCC and uncover potentially actionable therapeutic targets.

View Article and Find Full Text PDF

While genomic sequencing routinely identifies oncogenic alterations for the majority of cancers, many tumors harbor no discernable driver lesion. Here, we describe the exceptional molecular phenotype of a genomically quiet kidney tumor, clear cell papillary renal cell carcinoma (CCPAP). In spite of a largely wild-type nuclear genome, CCPAP tumors exhibit severe depletion of mitochondrial DNA (mtDNA) and RNA and high levels of oxidative stress, reflecting a shift away from respiratory metabolism.

View Article and Find Full Text PDF

The ever-changing tumor microenvironment constantly challenges individual cancer cells to balance supply and demand, presenting tumor vulnerabilities and therapeutic opportunities. Everolimus and temsirolimus are inhibitors of mTOR (mTORi) approved for treating metastatic renal cell carcinoma (mRCC). However, treatment outcome varies greatly among patients.

View Article and Find Full Text PDF

The molecular foundations of Hürthle cell carcinoma (HCC) are poorly understood. Here we describe a comprehensive genomic characterization of 56 primary HCC tumors that span the spectrum of tumor behavior. We elucidate the mutational profile and driver mutations and show that these tumors exhibit a wide range of recurrent mutations.

View Article and Find Full Text PDF

The BCL-2 family proteins are central regulators of apoptosis. However, cells deficient for BAX and BAK or overexpressing BCL-2 still succumb to oxidative stress upon DNA damage or matrix detachment. Here, we show that ΔNp63α overexpression protects cells from oxidative stress induced by oxidants, DNA damage, anoikis, or ferroptosis-inducing agents.

View Article and Find Full Text PDF

Unlabelled: To describe the unique clinical features, determine the genomics, and investigate the metabolic derangement of an extremely rare form of a hereditary lethal kidney cancer syndrome.

Patients And Methods: Three patients with lethal kidney cancer (age 19, 20, and 37 years) exhibiting persistent (1 to 3 months) extremely high levels of blood lactate (> 5 mM) despite normal oxygen perfusion, highly avid tumors on [F]fluorodeoxyglucose positron emission tomography (PET), and pleomorphic histopathologic features were identified and treated in a single institute. Integrated studies including whole-genome sequencing (WGS), targeted sequencing, immunohistochemistry, cell-based assays, and F-glutamine PET imaging were performed to investigate this rare kidney cancer syndrome.

View Article and Find Full Text PDF

Background: Parallel development of preclinical models that recapitulate treatment response observed in patients is central to the advancement of personalized medicine.

Objective: To evaluate the use of biopsy specimens to develop patient-derived xenografts and the use of corresponding cell lines from renal cell carcinoma (RCC) tumors for the assessment of histopathology, genomics, and treatment response.

Design, Setting, And Participants: A total of 74 tumor specimens from 66 patients with RCC were implanted into immunocompromised NOD-SCID IL2Rg mice.

View Article and Find Full Text PDF

BCL-2 family proteins are central regulators of mitochondrial apoptosis and validated anti-cancer targets. Using small cell lung cancer (SCLC) as a model, we demonstrated the presence of differential addiction of cancer cells to anti-apoptotic BCL-2, BCL-X or MCL-1, which correlated with the respective protein expression ratio. ABT-263 (navitoclax), a BCL-2/BCL-X inhibitor, prevented BCL-X from sequestering activator BH3-only molecules (BH3s) and BAX but not BAK.

View Article and Find Full Text PDF

The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC.

View Article and Find Full Text PDF

PBRM1 is the second most commonly mutated gene after VHL in clear cell renal cell carcinoma (ccRCC). However, the biological consequences of PBRM1 mutations for kidney tumorigenesis are unknown. Here, we find that kidney-specific deletion of Vhl and Pbrm1, but not either gene alone, results in bilateral, multifocal, transplantable clear cell kidney cancers.

View Article and Find Full Text PDF

Renal cell carcinomas with unclassified histology (uRCC) constitute a significant portion of aggressive non-clear cell renal cell carcinomas that have no standard therapy. The oncogenic drivers in these tumours are unknown. Here we perform a molecular analysis of 62 high-grade primary uRCC, incorporating targeted cancer gene sequencing, RNA sequencing, single-nucleotide polymorphism array, fluorescence in situ hybridization, immunohistochemistry and cell-based assays.

View Article and Find Full Text PDF

Genomic studies have linked mTORC1 pathway-activating mutations with exceptional response to treatment with allosteric inhibitors of mTORC1 called rapalogs. Rapalogs are approved for selected cancer types, including kidney and breast cancers. Here, we used sequencing data from 22 human kidney cancer cases to identify the activating mechanisms conferred by mTOR mutations observed in human cancers and advance precision therapeutics.

View Article and Find Full Text PDF

The impact of patient-specific spatial distribution features of cell nuclei on tumor growth characteristics was analyzed. Tumor tissues from kidney cancer patients were allowed to grow in mice to apply H&E staining and to measure tumor volume during preclinical phase of our study. Imaging the H&E stained slides under a digital light microscope, the morphological characteristics of nuclei positions were determined.

View Article and Find Full Text PDF

Taspase1, a highly conserved threonine protease, cleaves nuclear transcriptional regulators mixed-lineage leukemia (MLL, MLL1), MLL2, TFIIA, and ALF to orchestrate a wide variety of biological processes. In vitro studies thus far demonstrated that Taspase1 plays important roles in the proliferation of various cancer cell lines, including HER2-positive breast cancer cells. To investigate the role of Taspase1 in breast tumorigenesis in vivo, we deleted Taspase1 from mouse mammary glands by generating MMTV-neu;MMTV-cre;Tasp1(F/-) mice.

View Article and Find Full Text PDF

HGF signals through its cognate receptor, MET, to orchestrate diverse biological processes, including cell proliferation, cell fate specification, organogenesis, and epithelial-mesenchymal transition. Mixed-lineage leukemia (MLL), an epigenetic regulator, plays critical roles in cell fate, stem cell, and cell cycle decisions. Here, we describe a role for MLL in the HGF-MET signaling pathway.

View Article and Find Full Text PDF

The clinical efficacy of tyrosine kinase inhibitors supports the dependence of distinct subsets of cancers on specific driver mutations for survival, a phenomenon called "oncogene addiction." We demonstrate that PUMA and BIM are the key apoptotic effectors of tyrosine kinase inhibitors in breast cancers with amplification of the gene encoding human epidermal growth factor receptor 2 (HER2) and lung cancers with epidermal growth factor receptor (EGFR) mutants. The BH3 domain containing proteins BIM and PUMA can directly activate the proapoptotic proteins BAX and BAK to permeabilize mitochondria, leading to caspase activation and apoptosis.

View Article and Find Full Text PDF

The threonine endopeptidase Taspase1 has a critical role in cancer cell proliferation and apoptosis. In this study, we developed and evaluated small molecule inhibitors of Taspase1 as a new candidate class of therapeutic modalities. Genetic deletion of Taspase1 in the mouse produced no overt deficiencies, suggesting the possibility of a wide therapeutic index for use of Taspase1 inhibitors in cancers.

View Article and Find Full Text PDF

Trop2, an oncogenic cell surface protein under investigation as a therapeutic target, is commonly overexpressed in several epithelial tumor types yet its function in tumor biology remains relatively unexplored. To investigate the role of Trop2 in epithelial carcinogenesis, we generated Trop2(-/-) mice, which are viable and possess a normal lifespan. Contrary to expectations, Trop2 loss fails to suppress keratinocyte transformation.

View Article and Find Full Text PDF