Publications by authors named "Ying-Hua Chu"

Article Synopsis
  • - Research focuses on using deep learning with PET scans (11C-methionine and 18F-fluoroethyltyrosine) to non-invasively predict H3K27M mutation status in midline gliomas.
  • - An assistance training scheme was developed to enhance prediction accuracy using either PET scan type, achieving significant performance improvements over traditional methods, with AUC scores of 0.9343 (MET) and 0.8619 (FET) in validation.
  • - The method also demonstrated strong performance in testing with high AUCs, indicating its clinical feasibility as a supportive tool for treatment decisions in uncertain pathology cases for midline glioma.
View Article and Find Full Text PDF

Spinal cord injury (SCI) profoundly affects an individual's ability to move. Fortunately, recent advancements in neuromodulation, particularly the spatio-temporal epidural electrical stimulation (EES) targeting the spinal nerve roots, promoted rapid rehabilitation of SCI patients. Such neuromodulation techniques require precise anatomical modelling of spinal cord.

View Article and Find Full Text PDF

Background: Accurate volumetric segmentation of primary central nervous system lymphoma (PCNSL) is essential for assessing and monitoring the tumor before radiotherapy and the treatment planning. The tedious manual segmentation leads to interindividual and intraindividual differences, while existing automatic segmentation methods cause under-segmentation of PCNSL due to the complex and multifaceted nature of the tumor.

Objective: To address the challenges of small size, diffused distribution, poor inter-layer continuity on the same axis, and tendency for over-segmentation in brain MRI PCNSL segmentation, we propose an improved attention module based on nnUNet for automated segmentation.

View Article and Find Full Text PDF

Background: Quantitative in-situ pH mapping of gliomas is important for therapeutic interventions, given its significant association with tumor progression, invasion, and metastasis. Although chemical exchange saturation transfer (CEST) offers a noninvasive way for pH imaging based on the pH-dependent exchange rate (k), the reliable quantification of k in glioma remains constrained due to technical challenges.

Purpose: To quantify the pH of gliomas by measuring the proton exchange rate through optimized omega plot analysis.

View Article and Find Full Text PDF

Background: Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in human brains, playing a role in the pathogenesis of various psychiatric disorders. Current methods have some non-neglectable shortcomings and noninvasive and accurate detection of GABA in human brains is long-term challenge.

Purpose: To develop a pulse sequence capable of selectively detecting and quantifying the H signal of GABA in human brains based on optimal controlled spin singlet order.

View Article and Find Full Text PDF

Background And Goal: Noninvasive prediction of isocitrate dehydrogenase (IDH) mutation status in glioma guides surgical strategies and individualized management. We explored the capability on preoperatively identifying IDH status of combining a convolutional neural network (CNN) and a novel imaging modality, ultra-high field 7.0 Tesla (T) chemical exchange saturation transfer (CEST) imaging.

View Article and Find Full Text PDF

Cerebral neoplasms like gliomas may cause intracranial pressure increasing, neural tract deviation, infiltration, or destruction in peritumoral areas, leading to neuro-functional deficits. Novel tracking technology, such as DTI, can objectively reveal and visualize three-dimensional white matter trajectories; in combination with intraoperative navigation, it can help achieve maximum resection whilst minimizing neurological deficit. Since the reconstruction of DTI raw data largely relies on the technical engineering and anatomical experience of the operator; it is time-consuming and prone to operator-induced bias.

View Article and Find Full Text PDF

Purpose: The phase mismatch between odd and even echoes in EPI causes Nyquist ghost artifacts. Existing ghost correction methods often suffer from severe residual artifacts and are ineffective with k-space undersampling data. This study proposed a deep learning-based method (PEC-DL) to correct phase errors for DWI at 7 Tesla.

View Article and Find Full Text PDF

Introduction: Chronic cerebral hypoperfusion has been considered the etiology for sporadic Alzheimer's disease (AD). However, no valid clinical evidence exists due to the similar risk factors between cerebrovascular disease and AD.

Methods: We used moyamoya disease (MMD) as a model of chronic hypoperfusion and cognitive impairment, without other etiology interference.

View Article and Find Full Text PDF

Background: High blood pressure (BP) is a common risk factor for cerebral small vessel disease including white matter hyperintensity (WMH). Whether increased BP exacerbates WMH by impacting cerebral vascular morphologies remains poorly studied.

Purpose: To determine the relationships among high BP, cerebrovascular morphologies, and WMH in elderly individuals.

View Article and Find Full Text PDF

Electroencephalography (EEG) concurrently collected with functional magnetic resonance imaging (fMRI) is heavily distorted by the repetitive gradient coil switching during the fMRI acquisition. The performance of the typical template-based gradient artifact suppression method can be suboptimal because the artifact changes over time. Gradient artifact residuals also impede the subsequent suppression of ballistocardiography artifacts.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to introduce a novel design method of a shim coil array specifically optimized for whole brain shimming and to compare the performance of the resulting coils to conventional spherical harmonic shimming.

Methods: The proposed design approach is based on the stream function method and singular value decomposition. Eighty-four field maps from 12 volunteers measured in seven different head positions were used during the design process.

View Article and Find Full Text PDF

Frequency preference and spectral tuning are two cardinal features of information processing in the auditory cortex. However, sounds should not only be processed in separate frequency bands because information needs to be integrated to be meaningful. One way to better understand the integration of acoustic information is to examine the functional connectivity across cortical depths, as neurons are already connected differently across laminar layers.

View Article and Find Full Text PDF

Ultrafast functional magnetic resonance imaging (fMRI) can measure blood oxygen level dependent (BOLD) signals with high sensitivity and specificity. Here we propose a novel method: simultaneous multi-slice inverse imaging (SMS-InI) - a combination of simultaneous multi-slice excitation, simultaneous echo refocusing (SER), blipped controlled aliasing in parallel imaging echo-planar imaging (EPI), and regularized image reconstruction. Using a 32-channel head coil array on a 3 T scanner, SMS-InI achieves nominal isotropic 5-mm spatial resolution and 10 Hz sampling rate at the whole-brain level.

View Article and Find Full Text PDF

Field probes are miniature receiver coils with localized NMR-active samples inside. They are useful in monitoring magnetic field. This information can be used to improve magnetic resonance image quality.

View Article and Find Full Text PDF

High-quality magnetic resonance imaging and spectroscopic measurements require a highly homogeneous magnetic field. Different from global shimming, localized off-resonance can be corrected by using multi-coil shimming. Previously, integrated RF and shimming coils have been used to implement multi-coil shimming.

View Article and Find Full Text PDF

The blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal is a robust surrogate for local neuronal activity. However, it has been shown to vary substantially across subjects, brain regions, and repetitive measurements. This variability represents a limit to the precision of the BOLD response and the ability to reliably discriminate brain hemodynamic responses elicited by external stimuli or behavior that are nearby in time.

View Article and Find Full Text PDF

Purpose: The inhomogeneity of flip angle distribution is a major challenge impeding the application of high-field MRI. We report a method combining spatially selective excitation using generalized spatial encoding magnetic fields (SAGS) with radiofrequency (RF) shimming to achieve homogeneous excitation. This method can be an alternative approach to address the challenge of B1+ inhomogeneity using nonlinear gradients.

View Article and Find Full Text PDF

The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance.

View Article and Find Full Text PDF

One major challenge of MRSI is the poor signal-to-noise ratio (SNR), which can be improved by using a surface coil array. Here we propose to exploit the spatial sensitivity of different channels of a coil array to enforce the k-space data consistency (DC) in order to suppress noise and consequently to improve MRSI SNR. MRSI data were collected using a proton echo planar spectroscopic imaging (PEPSI) sequence at 3 T using a 32-channel coil array and were averaged with one, two and eight measurements (avg-1, avg-2 and avg-8).

View Article and Find Full Text PDF

Granger causality analysis has been suggested as a method of estimating causal modulation without specifying the direction of information flow a priori. Using BOLD-contrast functional MRI (fMRI) data, such analysis has been typically implemented in the time domain. In this study, we used magnetic resonance inverse imaging, a method of fast fMRI enabled by massively parallel detection allowing up to 10 Hz sampling rate, to investigate the causal modulation at different frequencies up to 5 Hz.

View Article and Find Full Text PDF

Purpose: To develop a method of achieving large field of view (FOV) imaging with a smaller amount of data in ultra-low-field (ULF) MRI.

Theory: In rotary scanning acquisition (RSA), data from the imaging object is acquired at multiple angles by rotating the object or the scanner. RSA is similar to radial-trajectory acquisition but simplifies the measurement and image reconstruction when concomitant fields are nonnegligible.

View Article and Find Full Text PDF

Estimation of causal interactions between brain areas is necessary for elucidating large-scale functional brain networks underlying behavior and cognition. Granger causality analysis of time series data can quantitatively estimate directional information flow between brain regions. Here, we show that such estimates are significantly improved when the temporal sampling rate of functional magnetic resonance imaging (fMRI) is increased 20-fold.

View Article and Find Full Text PDF

Seeing the articulatory gestures of the speaker ("speech reading") enhances speech perception especially in noisy conditions. Recent neuroimaging studies tentatively suggest that speech reading activates speech motor system, which then influences superior-posterior temporal lobe auditory areas via an efference copy. Here, nineteen healthy volunteers were presented with silent videoclips of a person articulating Finnish vowels /a/, /i/ (non-targets), and /o/ (targets) during event-related functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

High-field MRI has the challenge of inhomogeneous B1(+) and consequently an inhomogeneous flip angle distribution. This causes spatially dependent contrast and makes clinical diagnosis difficult. Under the small flip angle approximation and using nonlinear spatial encoding magnetic fields (SEMs), we propose a method to remap the B1(+) map into a lower dimension coordinate system.

View Article and Find Full Text PDF