Publications by authors named "Yezer"

Bhutan has reopened schools and colleges after an initial closure to contain coronavirus disease 2019 (COVID-19) transmission. However, the risk of transmissions is higher in the schools and colleges due to crowding. Therefore, this study aimed to assess the level of knowledge, attitude, and practice (KAP) toward COVID-19 among the students of Sherubtse College in Bhutan.

View Article and Find Full Text PDF

ZetaSpin determines zeta potential by measuring the streaming potential generated by rotating a disk-shaped sample about its axis while submerged in the liquid. The apparatus and procedure developed for ZetaSpin in aqueous solutions was adapted for use in highly nonpolar fluids like surfactant-doped alkanes. Perhaps most unexpected is the need for up to 10 min (instead of a fraction of one second for aqueous solutions) for the electrometer to display changes in streaming potential in response to changes in rotation speed.

View Article and Find Full Text PDF

Recently, protein therapeutics have gained significant attention as a result of their enhanced selectivity and diminished side effects compared to traditional small-molecule drugs. Despite their advantages, protein formulations typically suffer from stability issues because of aggregation and denaturation during production and storage, often resulting in detrimental immune responses. Surfactants can be used to stabilize and protect proteins in solution by preventing protein adsorption onto interfaces or by forming protective structures in solution.

View Article and Find Full Text PDF

Among other synthetic polymers, poly-Ɛ-caprolacton (PCL) nanofibers are one of the most popular ones, especially in tissue engineering application due to its distinct mechanical and chemical properties. However, in some cases, lacking functional group on polymer structure obstructs the covalent modification of the PCL nanofibers for the aim. Herein, polyethyleneimine (PEI) was blended with PCL polymer to provide functional amino groups on the surface of the nanofiber mat.

View Article and Find Full Text PDF

To improve liquid formulation stability, formulators employ various excipients designed to stabilize protein drugs, including buffers, salts, sugars, and surfactants. One of the roles of surfactants is to protect the protein drug from surface interactions that can destabilize the protein. Protein drug products formulated with surfactants usually contain either a polysorbate or poloxamer.

View Article and Find Full Text PDF

Electric fields can deform drops of fluid from their equilibrium shape, and induce breakup at sufficiently large field strengths. In this work, the electric field induced breakup of a squalane drop containing a colloidal suspension of carbon black particles with polyisobutylene succinimide (OLOA 11000) surfactant is studied. The drop is suspended in silicone oil.

View Article and Find Full Text PDF

Development of an electrostatic stabilization mechanism for colloidal suspensions in nonpolar fluids requires an improved understanding of the interactions between the inverse micelles and particles as well as the roles that steric and electrostatic effects play. A droplet-based millifluidic device is designed and used to investigate the stabilization effects of surfactants on colloidal suspensions. A system containing carbon black and the surfactant OLOA 11000 suspended in dodecane is chosen as a well-characterized system to study sedimentation quantitatively.

View Article and Find Full Text PDF

After presenting a brief historical overview of the classic contributions of Faraday, Arrhenius, Kohlrausch, Bjerrum, Debye, Hückel and Onsager to understanding the conductivity of true electrolytes in aqueous solutions, we present an in-depth review of the 1933 work of Fuoss & Kraus who explored the effect of the solvent on electrolyte dissociation equilibria in either polar or nonpolar media. Their theory predicts that the equilibrium constant for dissociation decays exponentially with the ratio of the Bjerrum length λ to the ion-pair size a. Fuoss & Kraus experimentally confirmed the dependence on λ of the solvent, while more recent experiments explored the dependence on a.

View Article and Find Full Text PDF

Amphiphilic Janus particles are currently receiving great attention as "solid surfactants". Previous studies have introduced such particles with a variety of shapes and functions, but there has so far been a strong emphasis on water-dispersible particles that mimic the molecular surfactants soluble in polar solvents. Here we present an example of lipophilic Janus particles which are selectively dispersible in very nonpolar solvents such as alkanes.

View Article and Find Full Text PDF

The impedance of dodecane doped with sorbitan trioleate (Span 85), sorbitan monooleate (Span 80) and sorbitan monolaurate (Span 20) was measured as a function of frequency using a 10 mV amplitude sinusoidal voltage applied across a parallel plate cell with a 10 μm spacing. The tested solutions varied in concentration from 1 mM to 100 mM and the frequency range was 10(-2)-10(4) Hz. Nyquist plots of all three surfactants showed the high frequency semicircle characteristic of parallel resistance and capacitance but often exhibited a second semicircle at low frequencies which was attributed to charge adsorption and desorption.

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy in a thin cell (10 μm) was used to infer conductivity, permittivity and the differential double-layer capacitance of solutions of dodecane doped with OLOA 11000 [poly(isobutylene) succinimide] for concentrations of dopant between 0.1% and 10% by weight. All spectra (frequencies between 1 Hz and 100 kHz) were well fit by an equivalent circuit having four elements including a constant-phase element representing the double-layer capacitance.

View Article and Find Full Text PDF

Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files.

View Article and Find Full Text PDF