Neuroepithelial cell transforming gene 1 (NET1) is a member of the Ras homologue family member A (RhoA) subfamily of guanine nucleotide exchange factors and a key protein involved in the activation of Rho guanosine triphosphatases, which act as regulators of cell proliferation, cytoskeletal organization, and cell movement and are crucial for cancer spread. Research has shown that NET1 can regulate the malignant biological functions of tumour cells, such as growth, invasion, and metastasis, and it is closely related to the progression of pancreatic cancer, gastric cancer, and liver cancer. However, the comprehensive role and mechanistic function of NET1 in other types of cancer remain largely unexplored.
View Article and Find Full Text PDFWhile photocatalytic CO reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO photoreduction remain limited. Herein, different coordinated anions (F, Cl, OAc, and NO ) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO), for photocatalytic CO reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenase 1 (IDO1) plays an important role in the initiation and progression of breast cancer. DNA promoter methylation status has the potential to be used as a biomarker for predicting the response to immunotherapy. This study aimed to investigate the biological and clinical significance of IDO1 promoter methylation in breast cancer.
View Article and Find Full Text PDFNitrogen (N) fertilizer application ensures crop production and food security worldwide. N-controlled boosting of shoot branching that is also referred as tillering can improve planting density for increasing grain yield of cereals. Here, we report that Sugar Transporter Protein 28 (OsSTP28) as a key regulator of N-responsive tillering and yield formation in rice.
View Article and Find Full Text PDFLysophosphatidylcholine acyltransferase 1 (LPCAT1) is a crucial enzyme involved in phospholipid metabolism and is essential for maintaining the structure and functionality of biofilms. However, a comprehensive examination of the role of LPCAT1 across various cancer types is lacking. Multiple public databases have been utilized to examine LPCAT1 expression, genetic alterations, methylation, prognosis, biological function, and its relationship with antitumor immunity in different cancer types.
View Article and Find Full Text PDFWhile supported metal nanoparticles (NPs) have shown significant promise in heterogeneous catalysis, precise control over their interaction with the support, which profoundly impacts their catalytic performance, remains a significant challenge. In this study, Pt NPs are incorporated into thioether-functionalized covalent organic frameworks (denoted COF-S), enabling precise control over the size and electronic state of Pt NPs by adjusting the thioether density dangling on the COF pore walls. Notably, the resulting Pt@COF-S demonstrate exceptional selectivity (> 99 %) in catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline, in sharp contrast to the poor selectivity of Pt NPs embedded in thioether-free COFs.
View Article and Find Full Text PDFEnvironmental changes induced by urbanization may significantly alter plant survival strategies, thereby introducing uncertainties in their ability to withstand extreme heat. This study, centered on Jinhua City, distinguished urban, suburban, and rural areas to represent the various intensities of urbanization. It examined the leaf function properties of evergreen and deciduous trees common in these regions, focusing on leaf and branch characteristics.
View Article and Find Full Text PDFBreast cancer (BC) stands out as the cancer with the highest incidence of morbidity and mortality among women worldwide, and its incidence rate is currently trending upwards. Improving the efficiency of breast cancer diagnosis and treatment is crucial, as it can effectively reduce the disease burden. Circulating tumor DNA (ctDNA) originates from the release of tumor cells and plays a pivotal role in the occurrence, development, and metastasis of breast cancer.
View Article and Find Full Text PDFAlthough single-atom Cu sites exhibit high efficiency in CO hydrogenation to methanol, they are prone to forming Cu nanoparticles due to reduction and aggregation under reaction conditions, especially at high temperatures. Herein, single-atom Cu sites stabilized by adjacent Na ions have been successfully constructed within a metal-organic framework (MOF)-based catalyst, namely MOF-808-NaCu. It is found that the electrostatic interaction between the Na and H species plays a pivotal role in upholding the atomic dispersion of Cu in MOF-808-NaCu during CO hydrogenation, even at temperatures of up to 275°C.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2024
A novel class of crystalline porous materials has been developed utilizing multilevel dynamic linkages, including covalent B-O, dative B←N and hydrogen bonds. Typically, boronic acids undergo in situ condensation to afford BO-based units, which further extend to molecular complexes or chains via B←N bonds. The obtained superstructures are subsequently interconnected via hydrogen bonds and π-π interactions, producing crystalline porous organic frameworks (CPOFs).
View Article and Find Full Text PDFBackground: In the context of breast cancer (BC), the correlation between lymphocytes and clinical outcomes, along with treatment response, has garnered attention. Despite this, few investigations have delved into the interplay among distinct peripheral blood lymphocyte (PBL) types, immune attributes, and their clinical implications within the BC landscape.
Methods: The primary objective of this study was to scrutinize the baseline status of PBL subsets in patients with primary BC, track their dynamic changes throughout treatment, and ascertain their interrelation with prognosis.
Background: Gait model consists of a marker set and a segment pose estimation algorithm. Plugin marker set and inverse kinematic algorithm (IK.) are prevalent in gait analysis, especially musculoskeletal motion analysis.
View Article and Find Full Text PDFIn non-small cell lung cancer (NSCLC) treatment, aberrant expression of c-mesenchymal-epithelial transition factor (c-Met) has been identified as a driving factor in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance. Unfortunately, none of the EGFR/c-Met dual-target inhibitors have successfully passed clinical trials. Hence, based on molecular docking analysis and combination principles of EGFR and c-Met inhibitors, three series of 4-(2-fluorophenoxy)-7-methoxyquinazoline derivatives as new EGFR/c-Met inhibitors were designed, synthesized, and evaluated for their biological activities.
View Article and Find Full Text PDFTo explore the clinical role of QPRT in breast cancer. The gene expression, methylation levels and prognostic value of QPRT in breast cancer was analyzed using TCGA data. Validation was performed using the data from GEO dataset and TNMPLOT database.
View Article and Find Full Text PDFThe design and synthesis of covalent organic frameworks (COFs) with high chemical stability pose significant challenges for practical applications. Although a growing number of robust COFs have been developed and employed for a broad scope of applications, the assessment of COF stability has primarily relied on qualitative descriptions, lacking a rational and quantitative assessment. Herein, a novel assessment method is presented that enables visual and quantitative depiction of COF stability.
View Article and Find Full Text PDFTelomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2023
Covalent organic frameworks (COFs), possessing pre-designable structures and tailorable functionalities, are promising candidates for photocatalysis. Nevertheless, the most studied imine-linked COFs (Im-COFs) usually suffer from unsatisfactory stability and photocatalytic performance. To meet this challenge, a series of highly stable enaminone-linked COFs (En-COFs) have been synthesized and afford much improved visible-light-driven hydrogen production activities, ranging from 44 to 1078 times that of isoreticular Im-COFs, with the only difference being the linkages (enaminone vs.
View Article and Find Full Text PDFBenefiting from their unique structural merits, three-dimensional (3D) large-pore COF materials demonstrate high surface areas and interconnected large channels, which makes these materials promising in practical applications. Unfortunately, functionalization strategies and application research are still absent in these structures. To this end, a series of functional 3D -topologized COFs are designed based on porphyrin or metalloporphyrin moieties, named JUC-640-M (M = Co, Ni, or H).
View Article and Find Full Text PDFBinocular stereoscopic matching is an essential method in computer vision, imitating human binocular technology to obtain distance information. Among plentiful stereo matching algorithms, Semi-Global Matching (SGM) is recognized as one of the most popular vision algorithms due to its relatively low power consumption and high accuracy, resulting in many excellent SGM-based hardware accelerators. However, vision algorithms, including SGM, are still somewhat inaccurate in actual long-range applications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
Three-dimensional covalent organic frameworks (3D COFs) with spatially periodic networks demonstrate significant advantages over their 2D counterparts, including enhanced specific surface areas, interconnected channels, and more sufficiently exposed active sites. Nevertheless, research on these materials has met an impasse due to serious problems in crystallization and stability, which must be solved for practical applications. In this Minireview, we first summarize some strategies for preparing functional 3D COFs, including crystallization techniques and functionalization methods.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) have attracted extensive interest due to their unique structures and various applications. However, structural diversities are still limited, which greatly restricts the development of COF materials. Herein, we report two unusual cubic (8-connected) building units and their derived 3D imine-linked COFs with nets, JUC-588 and JUC-589.
View Article and Find Full Text PDFConspectusAs one of the most attractive members in the porous materials family, covalent organic frameworks (COFs) have been reported thousands of times since their first discovery in 2005, covering their design, synthesis, and applications. However, an overwhelming majority of these COFs are based on two-dimensional (2D) topologies while three-dimensional (3D) COFs are numbered fewer than 100 up to date. In fact, baring enhanced specific surface area, interconnected channels, well-exposed functional moieties, and highly adjustable structures, 3D COFs are often more competitive in various application fields like adsorption, separation, chemical sensing, and heterogeneous catalysis compared with their 2D counterparts.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer.
View Article and Find Full Text PDFThe development and study of a simple copper-catalyzed reaction of nitroarenes with aryl boronic acids to form diarylamines that uses phenyl silane as the stoichiometric terminal reductant is described. This cross-coupling reaction requires as little as 2 mol % of CuX and 4 mol% of diphosphine for success and tolerates a broad range of functional groups on either the nitroarene or the aryl boronic acid with to afford the amine in good yield. Mechanistic investigations established that the cross-coupling reaction proceeds via a nitrosoarene intermediate and that copper is required to catalyze both the deoxygenation of the nitroarene to afford the nitrosoarene and C-NAr bond formation of the nitrosoarene with the aryl boronic acid.
View Article and Find Full Text PDFThe development of bioinspired nano/subnano-sized (<2 nm) ion channels is still considered a great challenge due to the difficulty in precisely controlling pore's internal structure and chemistry. Herein, for the first time, we report that three-dimensional functionalized covalent organic frameworks (COFs) can act as an effective nanofluidic platform for intelligent modulation of the ion transport. By strategic attachment of 12-crown-4 groups to the monomers as ion-driver door locks, we demonstrate that gating effects of functionalized COFs can be activated by lithium ions.
View Article and Find Full Text PDF