Publications by authors named "Wurihan"

Transcription attenuation in response to the availability of a specific amino acid is believed to be controlled by alternative configurations of RNA secondary structures that lead to the arrest of translation or the release of the arrested ribosome from the leader mRNA molecule. In this study, we first report a possible example of the DnaA-dependent riboswitch for transcription attenuation in . We show that (i) DnaA regulates the transcription of the structural genes but not that of the leader gene; (ii) DnaA might bind to rDnaA boxes present in the HisL-SL RNA, and subsequently attenuate the transcription of the operon; (iii) the HisL-SL RNA and rDnaA boxes are phylogenetically conserved and evolutionarily important; and (iv) the translating ribosome is required for deattenuation of the operon, whereas tRNA strengthens attenuation.

View Article and Find Full Text PDF

The obligate intracellular bacterium has a unique developmental cycle that alternates between two contrasting cell types. With a hardy envelope and highly condensed genome, the small elementary body (EB) maintains limited metabolic activities yet survives in extracellular environments and is infectious. After entering host cells, EBs differentiate into larger and proliferating reticulate bodies (RBs).

View Article and Find Full Text PDF

Hallmarks of the developmental cycle of the obligate intracellular pathogenic bacterium are the primary differentiation of the infectious elementary body (EB) into the proliferative reticulate body (RB) and the secondary differentiation of RBs back into EBs. The mechanisms regulating these transitions remain unclear. In this report, we developed an effective novel strategy termed dependence on plasmid-mediated expression (DOPE) that allows for the knockdown of essential genes in .

View Article and Find Full Text PDF

, an obligate intracellular bacterial pathogen, has a unique developmental cycle involving the differentiation of invading elementary bodies (EBs) to noninfectious reticulate bodies (RBs), replication of RBs, and redifferentiation of RBs into progeny EBs. Progression of this cycle is regulated by three sigma factors, which direct the RNA polymerase to their respective target gene promoters. We hypothesized that the -specific transcriptional regulator GrgA, previously shown to activate σ66 and σ28, plays an essential role in chlamydial development and growth.

View Article and Find Full Text PDF
Article Synopsis
  • The study used metabonomics to investigate liver and kidney toxicity caused by the drug garidi-5 in rats.
  • The research involved administering garidi-5 to rats for 28 days and analyzing their serum, liver, and kidney samples to identify changes in metabolites linked to toxicity.
  • Key findings indicated 52, 64, and 54 different metabolites in the high-dose group's samples, suggesting garidi-5 affects various metabolic pathways and identifies several potential biomarkers for liver and kidney toxicity.
View Article and Find Full Text PDF

Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium , whose genome encodes only three sigma factors and a single heat-induced transcription factor.

View Article and Find Full Text PDF

Purpose: To evaluate the microtensile bond strength (µTBS) of a one-step self-etch adhesive (1-SEA) to dentin and its interfacial nanomechanical properties after 8 years of water storage.

Materials And Methods: Flat coronal dentin surfaces of extracted human third molars were bonded with a 1-SEA (Clearfil S3 Bond Plus, CS3+) and built up with a hybrid resin composite (Clearfil AP-X). After storage in water for 24 h or 8 years, non-trimmed stick-shaped specimens were fabricated from the central part of each bonded tooth and subjected to the µTBS test at a crosshead speed of 1.

View Article and Find Full Text PDF

Chlamydia trachomatis is an obligate intracellular bacterium whose unique developmental cycle consists of an infectious elementary body and a replicative reticulate body. Progression of this developmental cycle requires temporal control of the transcriptome. In addition to the three chlamydial sigma factors (σ, σ, and σ) that recognize promoter sequences of genes, chlamydial transcription factors are expected to play crucial roles in transcriptional regulation.

View Article and Find Full Text PDF

The obligate intracellular bacterium Chlamydia trachomatis is an important human pathogen with a biphasic developmental cycle comprised of an infectious elementary body (EB) and a replicative reticulate body (RB). Whereas σ, the primary sigma factor, is necessary for transcription of most chlamydial genes throughout the developmental cycle, σ is required for expression of some late genes. We previously showed that the Chlamydia-specific transcription factor GrgA physically interacts with both of these sigma factors and activates transcription from σ- and σ-dependent promoters in vitro.

View Article and Find Full Text PDF

The presence of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) at the adhesive-dentin interface enables ionic binding to calcium salts, which results in rigid nano-layering within the submicron scale resin-dentin interdiffusion zone. MDP has been used with additional co-monomers, such as hydroxyethyl methacrylate (HEMA) and/or 4-methacryloyloxyethyl-trimellitic acid (4-MET), mainly to enhance the chemical bonding properties. However, the use of co-monomers may compromise the rigidity of the adhesive-dentin interface.

View Article and Find Full Text PDF

Chlamydiae are common, important pathogens for humans and animals alike. Despite recent advancement in genetics, scientists are still searching for efficient tools to knock out or knock down the expression of chromosomal genes. We attempted to adopt a dCas9-based CRISPR interference (CRISPRi) technology to conditionally knock down gene expression in Chlamydia trachomatis using an anhydrotetracycline (ATC)-inducible expression system.

View Article and Find Full Text PDF

Dental adhesive provides effective retention of filling materials via adhesive-dentin hybridization. The use of co-monomers, such as 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), is thought to be crucial for hybridization owing to their ionic-binding to calcium and co-polymerization in the polymerizable adhesives. Optimal hybridization partly depends on the mechanical properties of polymerized adhesives, which are likely to be proportional to the degree of conversion ratio.

View Article and Find Full Text PDF

Objective: Tooth enamel has unsurpassed hardness and stiffness among mammalian tissue structures. Such stiff materials are usually brittle, yet mature enamel can survive for a lifetime. Understanding the nanoscale origin of enamel durability is important for developing advanced load-bearing biomaterials.

View Article and Find Full Text PDF

An increase in non-enzymatic collagen matrix cross-links, such as advanced glycation end-products (AGEs), is known to be a major complication in human mineralized tissues, often causing abnormal fractures. However, degradation of mechanical properties in relation to AGEs has not been fully elucidated at the material level. Here, we report nanoscale time-dependent deformation and dimensional recovery of human tooth dentin that has undergone glycation induced by x-ray irradiation.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on the obligate intracellular bacterial pathogen, which has a complex developmental cycle involving distinct cellular forms.
  • GrgA is identified as a crucial transcription factor that enhances both primary and alternative sigma factor-dependent gene expression by binding to specific DNA regions.
  • This study underscores GrgA's expanded role in regulating transcription within the pathogen, shedding light on its developmental cycle and potential implications for related health issues, such as infertility and blindness.
View Article and Find Full Text PDF

The gene belongs to the SOS network, encoding a key component of the nucleotide excision repair. The promoter region contains three identified promoters with four LexA binding sites, one consensus and six potential DnaA binding sites. A more than threefold increase in transcription of the chromosomal gene is observed in both the Δ Δ cells and cells, and a fivefold increase in the Δ Δ cells relative to the wild-type cells.

View Article and Find Full Text PDF

The survival rate of vitrified-thawed ovarian tissues after autotransplantation still needs to be improved. Therefore finding an ideal cryoprectant to reduce the damage to ovaries that caused by vitrification will pave the way for application of ovary cryopreservation on clinics. Experiments were conducted to investigate the effect of sodium alginate in cryoprotectant solution on mouse ovaries during the vitrification process.

View Article and Find Full Text PDF

Atmospheric CO concentrations are predicted to double within the next century. Despite this trend, the extent and mechanisms through which elevated CO affects grass-endophyte symbionts remain uncertain. In the present study, the growth, chemical composition and pathogen resistance of endophyte-infected (E+) and uninfected (E-) tall fescue were compared under elevated CO conditions.

View Article and Find Full Text PDF

The trans-translation pathway, mediated by the transfer messenger RNA (tmRNA; encoded by the ssrA gene) and the SmpB protein (tmRNA-binding protein expressed in Salmonella enterica), which is conserved in bacteria, is required for various cellular processes. A previous study has shown that trans-translation is required to ensure timely (non-delayed) dnaA transcription and consequent initiation of DNA replication in Caulobacter crescentus. In this study, we observed that initiation of chromosome replication was delayed in Escherichia coli lacking the smpB and/or ssrA genes (DssrA, DsmpB, or DsmpBDssrA mutants).

View Article and Find Full Text PDF

Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface.

View Article and Find Full Text PDF

While bone mineralization is considered to be responsible for its stiffness, bone durability partially associated with the time-dependent viscoelasticity of matrix proteins is still poorly elucidated. Here we demonstrate a novel mechanism of highly mineralized bone durability almost independent of inherent viscoelastic behaviour along with a protocol for measuring the mechanical properties of mineralized tissues. Strain-rate nanoindentation tests showed substantial stiffening of the highly mineralized calvarial bone, whereas large creep or stress relaxation was observed during constant load or displacement tests, respectively.

View Article and Find Full Text PDF

Unlabelled: The biomechanical stability of mineralized tissues at the interface between implant surface and bone tissue is of critical importance. Anodically oxidized titanium prepared in a chloride solution results in enhanced mineralization of adherent osteoblasts and has antimicrobial activity against oral microorganisms. We evaluated the nanomechanical properties and molecular structures of the in vitro mineralized tissues developing around anodically oxidized titanium surfaces with and without preparation in chloride solution.

View Article and Find Full Text PDF

Unlabelled: Bone morphogenetic protein-2 (BMP2) is among the most popular anabolic agents and substantially increase bone volume related to enhanced osteoblast differentiation. Here we demonstrate a remarkable deterioration in the nanomechanical properties of mineralized tissue induced from osteoblasts solely by the function of BMP2. Mineralized tissue of primary osteoblasts cultured with BMP2 shows molecular features of both bone and cartilage, but depletion of lysyl oxidase family members leads to poor nanomechanical properties of the mineralized tissue.

View Article and Find Full Text PDF

Cells adhering onto implant surfaces are subjected to oxidative stress during wound healing processes. Although titanium and its alloys are among the most frequently used biomaterials in orthopedic and dental implants, titanium surfaces do not have antioxidant properties, and cells grown on these surfaces can show permanent oxidative stress. The present study assessed the antioxidant property and osteogenic properties of titanium samples with or without oxidation treatments.

View Article and Find Full Text PDF