Publications by authors named "Wen-Ju Pan"

A few large-scale spatiotemporal patterns of brain activity (quasiperiodic patterns or QPPs) account for most of the spatial structure observed in resting state functional magnetic resonance imaging (rs-fMRI). The QPPs capture well-known features such as the evolution of the global signal and the alternating dominance of the default mode and task positive networks. These widespread patterns of activity have plausible ties to neuromodulatory input that mediates changes in nonlocalized processes, including arousal and attention.

View Article and Find Full Text PDF

A few large-scale spatiotemporal patterns of brain activity (quasiperiodic patterns or QPPs) account for most of the spatial structure observed in resting state functional magnetic resonance imaging (rs-fMRI). The QPPs capture well-known features such as the evolution of the global signal and the alternating dominance of the default mode and task positive networks. These widespread patterns of activity have plausible ties to neuromodulatory input that mediates changes in nonlocalized processes, including arousal and attention.

View Article and Find Full Text PDF

Purpose: In resting-state fMRI (rs-fMRI), the global signal average captures widespread fluctuations related to unwanted sources of variance such as motion and respiration, as well as widespread neural activity; however, relative contributions of neural and non-neural sources to the global signal remain poorly understood. This study sought to tackle this problem through the comparison of the BOLD global signal to an adjacent non-brain tissue signal, where neural activity was absent, from the same rs-fMRI scan obtained from anesthetized rats. In this dataset, motion was minimal and ventilation was phase-locked to image acquisition to minimize respiratory fluctuations.

View Article and Find Full Text PDF
Article Synopsis
  • * It introduces StandardRat, a standardized fMRI acquisition protocol for rats that has been tested across 20 research centers to enhance data integration.
  • * The standardized protocol and processing pipeline improve the reliability of detecting functional connectivity patterns and are made publicly available to foster collaboration in the neuroimaging field.
View Article and Find Full Text PDF

A number of studies point to slow (0.1-2 Hz) brain rhythms as the basis for the resting-state functional magnetic resonance imaging (rsfMRI) signal. Slow waves exist in the absence of stimulation, propagate across the cortex, and are strongly modulated by vigilance similar to large portions of the rsfMRI signal.

View Article and Find Full Text PDF

Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity.

View Article and Find Full Text PDF

Functional connectivity, which reflects the spatial and temporal organization of intrinsic activity throughout the brain, is one of the most studied measures in human neuroimaging research. The noninvasive acquisition of resting state functional magnetic resonance imaging (rs-fMRI) allows the characterization of features designated as functional networks, functional connectivity gradients, and time-varying activity patterns that provide insight into the intrinsic functional organization of the brain and potential alterations related to brain dysfunction. Functional connectivity, hence, captures dimensions of the brain's activity that have enormous potential for both clinical and preclinical research.

View Article and Find Full Text PDF

How do intrinsic brain dynamics interact with processing of external sensory stimuli? We sought new insights using functional magnetic resonance imaging to track spatiotemporal activity patterns at the whole brain level in lightly anesthetized mice, during both resting conditions and visual stimulation trials. Our results provide evidence that quasiperiodic patterns (QPPs) are the most prominent component of mouse resting brain dynamics. These QPPs captured the temporal alignment of anticorrelation between the default mode (DMN)- and task-positive (TPN)-like networks, with global brain fluctuations, and activity in neuromodulatory nuclei of the reticular formation.

View Article and Find Full Text PDF

Resting state functional MRI (rs-fMRI) creates a rich four-dimensional data set that can be analyzed in a variety of ways. As more researchers come to view the brain as a complex dynamical system, tools are increasingly being drawn from other fields to characterize the complexity of the brain's activity. However, given that the signal measured with rs-fMRI arises from the hemodynamic response to neural activity, the extent to which complexity metrics reflect neural complexity as compared to signal properties related to image quality remains unknown.

View Article and Find Full Text PDF

Resting state functional magnetic resonance (rs-fMRI) imaging offers insights into how different brain regions are connected into functional networks. It was recently shown that networks that are almost identical to the ones created from conventional correlation analysis can be obtained from a subset of high-amplitude data, suggesting that the functional networks may be driven by instantaneous co-activations of multiple brain regions rather than ongoing oscillatory processes. The rs-fMRI studies, however, rely on the blood oxygen level dependent (BOLD) signal, which is only indirectly sensitive to neural activity through neurovascular coupling.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) is currently one of the most important neuroimaging methods in neuroscience. The image contrast in fMRI relies on the blood-oxygenation-level dependent (BOLD) signal, which indirectly reflects neural activity through neurovascular coupling. Because the mechanism that links the BOLD signal to neural activities involves multiple complicated processes, where neural activity, regional metabolism, hemodynamics, and the BOLD signal are all inter-connected, understanding the quantitative relationship between the BOLD signal and the underlying neural activities is crucial for interpreting fMRI data.

View Article and Find Full Text PDF

The field of brain connectomics develops our understanding of the brain's intrinsic organization by characterizing trends in spontaneous brain activity. Linear correlations in spontaneous blood-oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) fluctuations are often used as measures of functional connectivity (FC), that is, as a quantity describing how similarly two brain regions behave over time. Given the natural spectral scaling of BOLD-fMRI signals, it may be useful to represent BOLD-fMRI as multiple processes occurring over multiple scales.

View Article and Find Full Text PDF

Resting state functional MRI (fMRI) and functional connectivity are widely applied in humans to examine the role of brain networks in normal function and dysfunction. A similar approach can be taken in rodents, either to obtain translational measures in models of brain disorders or to more carefully examine the neurophysiological underpinnings of the networks. A protocol for resting state functional connectivity in the anesthetized rat, from animal setup to data acquisition to possible pipelines for data analysis, is described.

View Article and Find Full Text PDF

Optical studies of ex vivo brain slices where blood is absent show that neural activity is accompanied by significant intrinsic optical signals (IOS) related to activity-dependent scattering changes in neural tissue. However, the neural scattering signals have been largely ignored in vivo in widely-used IOS methods where absorption contrast from hemoglobin was employed. Changes in scattering were observed on a time scale of seconds in previous brain slice IOS studies, similar to the time scale for the hemodynamic response.

View Article and Find Full Text PDF

Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains.

View Article and Find Full Text PDF

A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously.

View Article and Find Full Text PDF

The brain is inherently multiscalar in both space and time. We argue that this multiscalar nature is reflected in the blood oxygenation level dependent (BOLD) fluctuations used to map functional connectivity. We present evidence that global fluctuations in activity, quasiperiodic spatiotemporal patterns, and aperiodic time-varying activity coexist within the BOLD signal.

View Article and Find Full Text PDF

The BOLD signal reflects hemodynamic events within the brain, which in turn are driven by metabolic changes and neural activity. However, the link between BOLD changes and neural activity is indirect and can be influenced by a number of non-neuronal processes. Motion and physiological cycles have long been known to affect the BOLD signal and are present in both humans and animal models.

View Article and Find Full Text PDF

While functional connectivity has typically been calculated over the entire length of the scan (5-10min), interest has been growing in dynamic analysis methods that can detect changes in connectivity on the order of cognitive processes (seconds). Previous work with sliding window correlation has shown that changes in functional connectivity can be observed on these time scales in the awake human and in anesthetized animals. This exciting advance creates a need for improved approaches to characterize dynamic functional networks in the brain.

View Article and Find Full Text PDF

Resting state functional MRI (rs-fMRI) and functional connectivity mapping have become widely used tools in the human neuroimaging community and their use is rapidly spreading into the realm of rodent research as well. One of the many attractive features of rs-fMRI is that it is readily translatable from humans to animals and back again. Changes in functional connectivity observed in human studies can be followed by more invasive animal experiments to determine the neurophysiological basis for the alterations, while exploratory work in animal models can identify possible biomarkers for further investigation in human studies.

View Article and Find Full Text PDF

Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC).

View Article and Find Full Text PDF

The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence.

View Article and Find Full Text PDF

Resting state functional magnetic resonance imaging (fMRI) can identify network alterations that occur in complex psychiatric diseases and behaviors, but its interpretation is difficult because the neural basis of the infraslow BOLD fluctuations is poorly understood. Previous results link dynamic activity during the resting state to both infraslow frequencies in local field potentials (LFP) (<1 Hz) and band-limited power in higher frequency LFP (>1 Hz). To investigate the relationship between these frequencies, LFPs were recorded from rats under two anesthetics: isoflurane and dexmedetomidine.

View Article and Find Full Text PDF