Publications by authors named "Wajaree Weera"

In various machinery engines, the engine oil is utilized as a lubricant. Heat transportation rate and to saving the energy dissipated due to higher temperature are the basic goals of all thermal systems. Thus, current work is mainly focused to develop a model for the Marangoni flow of nanofluids (NFs) with viscous dissipation.

View Article and Find Full Text PDF

Human dermal fibroblasts play an important role in skin homeostasis by producing and degrading extracellular matrix components. They have more replicative senescence when exposed to environmental and oxidative insults, resulting in human skin aging. However, this phenomenon can be mitigated by antioxidant phytochemicals.

View Article and Find Full Text PDF

In the present study, a neuro-evolutionary scheme is presented for solving a class of singular singularly perturbed boundary value problems (SSP-BVPs) by manipulating the strength of feed-forward artificial neural networks (ANNs), global search particle swarm optimization (PSO) and local search interior-point algorithm (IPA), i.e., ANNs-PSO-IPA.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) infection affects the immune system, particularly white blood cells known as CD4+ T-cells. HIV destroys CD4+ T-cells and significantly reduces a human's resistance to viral infectious diseases as well as severe bacterial infections, which can lead to certain illnesses. The HIV framework is defined as a system of nonlinear first-order ordinary differential equations, and the innovative Galerkin technique is used to approximate the solutions of the model.

View Article and Find Full Text PDF

Nanomaterials have achieved remarkable importance in cooling small electronic gadgets like akin and microchips devices. The role of nanoparticles is essential in various aspects, especially in biomedical engineering. Thus hybrid nanomaterials is introduced to strengthen the heat exchangers' performance.

View Article and Find Full Text PDF

Two-dimensional mixed convection radiative nanofluid flow along with the non-Darcy permeable medium across a wavy inclined surface are observed in the present analysis. The transformation of the plane surface from the wavy irregular surface is executed via coordinate alteration. The fluid flow has been evaluated under the outcomes of heat source, thermal radiation, and chemical reaction rate.

View Article and Find Full Text PDF

In the current study, the pseudoplastic model is used to analyze the mass and energy transmission through trihybrid nanofluid flow across a stretched permeable surface. The Darcy-Forchheimer relation is employed in the momentum equation to examine the influence of porosity. Energy and mass diffusion expressions are obtained by employing the double diffusion theories, which were proposed by Cattaneo and Christov and is broadly used by several researchers.

View Article and Find Full Text PDF

The current work aims to design a computational framework based on artificial neural networks (ANNs) and the optimization procedures of global and local search approach to solve the nonlinear dynamics of the spread of COVID-19, i.e., the SEIR-NDC model.

View Article and Find Full Text PDF

The lid-driven top wall's influence combined with the side walls' waviness map induce the mixed convection heat transfer, flow behavior, and entropy generation of a hybrid nanofluid (FeO-MWCNT/water), a process analyzed through the present study. The working fluid occupies a permeable cubic chamber and is subjected to a magnetic field. The governing equations are solved by employing the GFEM method.

View Article and Find Full Text PDF

Thermophoresis represents one of the most common methods of directing micromachines. Enhancement of heat transfer rates are of economic interest for micromachine operation. This study aims to examine the heat transfer enhancement within the shell and tube latent heat thermal storage system (LHTSS) using PCMs (Phase Change Materials).

View Article and Find Full Text PDF

This paper includes a numerical investigation of a hybrid fluid containing 4% of AlO-Cu nanoparticles in a lid-driven container. The upper wall of the container has a high temperature and is movable. The lower wall is cool and wavy.

View Article and Find Full Text PDF

In solar heating, ventilation, and air conditioning (HVAC), communications are designed to create new 3D mathematical models that address the flow of rotating Sutterby hybrid nanofluids exposed to slippery and expandable seats. The heat transmission investigation included effects such as copper and graphene oxide nanoparticles, as well as thermal radiative fluxing. The activation energy effect was used to investigate mass transfer with fluid concentration.

View Article and Find Full Text PDF

A numerical study was performed to analyze the impact of the combination of several factors on heat transfer rate, flow behavior, and entropy generation in a hybrid nanofluid occupying a porous trapezoid enclosure containing a rotating inner tube. The governing equations were discretized and solved using the Finite Element Method using Comsol multiphysics. The effects of the Darcy and Hartman number, nanoparticle volume fraction (from 0 to 6%), the utilization of various zigzag patterns of the hot wall, and the rotation speed of the inner tube (Ω = 100.

View Article and Find Full Text PDF

This paper presents a numerical simulation of a magneto-convection flow in a 3D chamber. The room has a very specific permeability and a zigzag bottom wall. The fluid used in this study is AlO-Cu/water with 4% nanoparticles.

View Article and Find Full Text PDF

The process of thin films is commonly utilized to improve the surface characteristics of materials. A thin film helps to improve the absorption, depreciation, flexibility, lighting, transport, and electromagnetic efficiency of a bulk material medium. Thin-film treatment can be especially helpful in nanotechnology.

View Article and Find Full Text PDF

The purpose of this study is to present the numerical investigations of an infection-based fractional-order nonlinear prey-predator system (FONPPS) using the stochastic procedures of the scaled conjugate gradient (SCG) along with the artificial neuron networks (ANNs), i.e., SCGNNs.

View Article and Find Full Text PDF