The provision of continuous passive, and intent-based assisted movements for neuromuscular training can be incorporated into a robotic elbow sleeve. The objective of this study is to propose the design and test the functionality of a soft robotic elbow sleeve in assisting flexion and extension of the elbow, both passively and using intent-based motion reinforcement. First, the elbow sleeve was developed, using elastomeric and fabric-based pneumatic actuators, which are soft and lightweight, in order to address issues of non-portability and poor alignment with joints that conventional robotic rehabilitation devices are faced with.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Invasive brain-machine-interface (BMI) has the prospect to empower tetraplegic patients with independent mobility through the use of brain-controlled wheelchairs. For the practical and long-term use of such control systems, the system has to distinguish between stop and movement states and has to be robust to overcome non-stationarity in the brain signals. In this work, we investigates the non-stationarity of the stop state on neural data collected from a macaque trained to control a robotic platform to stop and move in left, right, forward directions We then propose a hybrid approach that employs both random forest and linear discriminant analysis (LDA).
View Article and Find Full Text PDF