Publications by authors named "Thuong Le-Tien"

Objective: With the scenario of limited labeled dataset, this paper introduces a deep learning-based approach that leverages Diabetic Retinopathy (DR) severity recognition performance using fundus images combined with wide-field swept-source optical coherence tomography angiography (SS-OCTA).

Methods: The proposed architecture comprises a backbone convolutional network associated with a Twofold Feature Augmentation mechanism, namely TFA-Net. The former includes multiple convolution blocks extracting representational features at various scales.

View Article and Find Full Text PDF

Background: Diabetic Retinopathy (DR) is considered a pathology of retinal vascular complications, which stays in the top causes of vision impairment and blindness. Therefore, precisely inspecting its progression enables the ophthalmologists to set up appropriate next-visit schedule and cost-effective treatment plans. In the literature, existing work only makes use of numerical attributes in Electronic Medical Records (EMR) for acquiring such kind of DR-oriented knowledge through conventional machine learning techniques, which require an exhaustive job of engineering most impactful risk factors.

View Article and Find Full Text PDF

This paper proposes an effective exampled-based super-resolution (SR) method to improve the spatial resolution of medical image heavily corrupted by noise. Based on the sparsity of patches, the reconstruction of a high-resolution (HR) patch from each low-resolution (LR) input patch can be performed with the help of a database, by solving a non-negative sparse optimization problem. The challenge is to effectively solve this problem in case of a large size database.

View Article and Find Full Text PDF