This work presents a high-performance surface plasmon resonance (SPR)-based biosensor for glucose detection. While adding a metal-organic framework (MOF) layer, UiO-66, to the biosensor improves selectivity and enables direct detection without additional receptors, it does not significantly enhance sensitivity. A SPR-based biosensor is proposed to overcome this limitation by introducing a layer of 2D-transition metal dichalcogenides (2D-TMD) and decorating the UiO-66 structure with gold nanoparticles (UiO-66AuNP).
View Article and Find Full Text PDFCOVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global economy, which has caused the WHO to declare COVID-19 as a PHEIC (Public Health Emergency of International Concern). Until now, there has been no medicine that can completely cure COVID-19.
View Article and Find Full Text PDFThe thermodynamic picture describing the formation mechanism of bicontinuous concentric lamellar () nanostructured silica particles, silica, was investigated thoroughly. A series of classical kinetics of silica by varying the synthesis time were employed to observe the morphological evolution of silica. The formation mechanism of silica is proposed as the hydrolysis and condensation reactions in the reverse micelle, followed by the phase segregation process.
View Article and Find Full Text PDFWe present a density functional theory study of atomic and molecular adsorption on a single Pt atom deposited at the edges of graphene. We investigate geometric and electronic structures of atoms (H, C, N, and O) and molecules (O, CO, OH, NO, HO, and OOH) on a variety of Pt deposited graphene edges and compare the adsorption states with those on a Pt(111) surface and on a Pt single atom. Furthermore, using the calculated adsorption energy and simple kinetic models, the catalytic activities of a Pt single-atom catalyst for the oxygen reduction reaction and CO oxidation are discussed.
View Article and Find Full Text PDFSingle-atom catalysis, which utilizes single atoms as active sites, is one of the most promising ways to enhance the catalytic activity and to reduce the amount of precious metals used. Platinum atoms deposited on graphene are reported to show enhanced catalytic activity for some chemical reactions, methanol oxidation in direct methanol fuel cells. However, the precise atomic structure, the key to understand the origin of the improved catalytic activity, is yet to be clarified.
View Article and Find Full Text PDF