Resistance of rice (Oryza sativa) to sheath blight, caused by Rhizoctonia solani, is quantitative and involves two mechanisms: physiological resistance and disease escape. The epidemiological concept of components of resistance was applied using a detached tiller method under controlled conditions, to specifically address physiological resistance to sheath blight in rice. A sclerotium was inserted below the leaf collar of individual rice tillers maintained in tubes filled with water.
View Article and Find Full Text PDFFusarium head blight (FHB) is an important disease of wheat worldwide. Soissons is one of the most resistant varieties grown in UK. The current study was undertaken to identify QTL for FHB resistance in Soissons and to determine whether the semi-dwarfing alleles Rht-B1b and Rht-D1b have a similar influence on susceptibility to FHB.
View Article and Find Full Text PDFFusarium head blight (FHB) is an important disease of wheat worldwide. The cultivar Spark is more resistant than most other UK winter wheat varieties but the genetic basis for this is not known. A mapping population from a cross between Spark and the FHB susceptible variety Rialto was used to identify quantitative trait loci (QTL) associated with resistance.
View Article and Find Full Text PDFFinger millet is an allotetraploid (2n = 4x = 36) grass that belongs to the Chloridoideae subfamily. A comparative analysis has been carried out to determine the relationship of the finger millet genome with that of rice. Six of the nine finger millet homoeologous groups corresponded to a single rice chromosome each.
View Article and Find Full Text PDFFusarium head blight (FHB) of wheat has become a serious threat to wheat crops in numerous countries. In addition to loss of yield and quality, this disease is of primary importance because of the contamination of grain with mycotoxins such as deoxynivalenol (DON). The Swiss winter cultivar Arina possesses significant resistance to FHB.
View Article and Find Full Text PDFRestriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), expressed-sequenced tag (EST), and simple sequence repeat (SSR) markers were used to generate a genetic map of the tetraploid finger millet (Eleusine coracana subsp. coracana) genome (2n = 4x = 36). Because levels of variation in finger millet are low, the map was generated in an inter-subspecific F(2) population from a cross between E.
View Article and Find Full Text PDF