Publications by authors named "Siuly"

Given its detrimental effect on the brain, alcoholism is a severe disorder that can produce a variety of cognitive, emotional, and behavioral issues. Alcoholism is typically diagnosed using the CAGE assessment approach, which has drawbacks such as being lengthy, prone to mistakes, and biased. To overcome these issues, this paper introduces a novel paradigm for identifying alcoholism by employing electroencephalogram (EEG) signals.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is a serious and progressive neurological disorder affecting over 10 million people globally, emphasizing the need for early diagnosis to improve patient outcomes.
  • This study introduces a novel approach using a Time-Frequency Representation (TFR) based AlexNet Convolutional Neural Network (CNN) to analyze EEG signals, identifying crucial brain regions for more effective PD diagnosis.
  • The proposed method demonstrates high accuracy rates of 99.84% and 95.79% on two real-time EEG datasets, significantly surpassing traditional EEG-based detection methods and potentially improving patient care and quality of life.
View Article and Find Full Text PDF

Mild Cognitive Impairment (MCI) is often considered a precursor to Alzheimer's disease (AD), with a high likelihood of progression. Accurate and timely diagnosis of MCI is essential for halting the progression of AD and other forms of dementia. Electroencephalography (EEG) is the prevalent method for identifying MCI biomarkers.

View Article and Find Full Text PDF

Background: Alcoholism is a catastrophic condition that causes brain damage as well as neurological, social, and behavioral difficulties.

Limitations: This illness is often assessed using the Cut down, Annoyed, Guilty, and Eye-opener examination technique, which assesses the intensity of an alcohol problem. This technique is protracted, arduous, error-prone, and errant.

View Article and Find Full Text PDF

Schizophrenia is a severe mental illness which can cause lifelong disability. Most recent studies on the Electroencephalogram (EEG)-based diagnosis of schizophrenia rely on bespoke/hand-crafted feature extraction techniques. Traditional manual feature extraction methods are time-consuming, imprecise, and have a limited ability to balance accuracy and efficiency.

View Article and Find Full Text PDF

Effective sleep monitoring from electroencephalogram (EEG) signals is meaningful for the diagnosis of sleep disorders, such as sleep Apnea, Insomnia, Snoring, Sleep Hypoventilation, and restless legs syndrome. Hence, developing an automatic sleep stage scoring method based on EEGs has attracted extensive research attention in recent years. The existing methods of sleep stage classification are insufficient to investigate waveform patterns, texture patterns, and temporal transformation of EEG signals, which are most associated with sleep stages scoring.

View Article and Find Full Text PDF

Background: With the rapid development of technology, human activity recognition (HAR) from sensor data has become a key element for many real-world applications, such as healthcare, disease diagnosis and smart home systems. Although there have been several studies conducted on HAR, traditional methods remain inadequate in balancing efficiency, accuracy and speed. Moreover, existing studies have not identified a solution to managing imbalanced data in different activities groups of HAR, although that is major issue in determining satisfactory performance.

View Article and Find Full Text PDF

The diagnosis of neurological diseases is one of the biggest challenges in modern medicine, which is a major issue at the moment. Electroencephalography (EEG) recordings is usually used to identify various neurological diseases. EEG produces a large volume of multi-channel time-series data that neurologists visually analyze to identify and understand abnormalities within the brain and how they propagate.

View Article and Find Full Text PDF

Schizophrenia (SZ) is a severe and prolonged disorder of the human brain where people interpret reality in an abnormal way. Traditional methods of SZ detection are based on handcrafted feature extraction methods (manual process), which are tedious and unsophisticated, and also limited in their ability to balance efficiency and accuracy. To solve this issue, this study designed a deep learning-based feature extraction scheme involving the GoogLeNet model called "SchizoGoogLeNet" that can efficiently and automatically distinguish schizophrenic patients from healthy control (HC) subjects using electroencephalogram (EEG) signals with improved performance.

View Article and Find Full Text PDF

Early detection of depression is critical in assisting patients in receiving the best therapy possible to avoid negative repercussions. Depression detection using electroencephalogram (EEG) signals is a simple, low-cost, convenient, and accurate approach. This paper proposes a six-stage novel method for detecting depression using EEG signals.

View Article and Find Full Text PDF

A smart city is an intelligent space, in which large amounts of data are collected and analyzed using low-cost sensors and automatic algorithms. The application of artificial intelligence and Internet of Things (IoT) technologies in electronic health (E-health) can efficiently promote the development of sustainable and smart cities. The IoT sensors and intelligent algorithms enable the remote monitoring and analyzing of the healthcare data of patients, which reduces the medical and travel expenses in cities.

View Article and Find Full Text PDF

Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models.

View Article and Find Full Text PDF

Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a developmental disability characterized by persistent impairments in social interaction, speech and nonverbal communication, and restricted or repetitive behaviors. Currently Electroencephalography (EEG) is the most popular tool to inspect the existence of neurological disorders like autism biomarkers due to its low setup cost, high temporal resolution and wide availability. Generally, EEG recordings produce vast amount of data with dynamic behavior, which are visually analyzed by professional clinician to detect autism.

View Article and Find Full Text PDF

Electromyogram (EMG) signals have had a great impact on many applications, including prosthetic or rehabilitation devices, human-machine interactions, clinical and biomedical areas. In recent years, EMG signals have been used as a popular tool to generate device control commands for rehabilitation equipment, such as robotic prostheses. This intention of this study was to design an EMG signal-based expert model for hand-grasp classification that could enhance prosthetic hand movements for people with disabilities.

View Article and Find Full Text PDF

Epilepsy is one of the most chronic brain disorder recorded from since 2000 BC. Almost one-third of epileptic patients experience seizures attack even with medicated treatment. The menace of SUDEP (Sudden unexpected death in epilepsy) in an adult epileptic patient is approximately 8-17% more and 34% in a children epileptic patient.

View Article and Find Full Text PDF

Epilepsy is a serious neurological condition which contemplates as top 5 reasons for avoidable mortality from ages 5-29 in the worldwide. The avoidable deaths due to epilepsy can be reduced by developing efficient automated epilepsy detection or prediction machines or software. To develop an automated epilepsy detection framework, it is essential to properly understand the existing techniques and their benefit as well as detriment also.

View Article and Find Full Text PDF

Purpose: Heart disease is one of the leading causes of death. Among patients with cardiovascular diseases, myocardial infarction (MI) is the main reason. Precise and timely identification of MI is significant for early treatment.

View Article and Find Full Text PDF

Diagnosis of schizophrenia (SZ) is traditionally performed through patient's interviews by a skilled psychiatrist. This process is time-consuming, burdensome, subject to error and bias. Hence the aim of this study is to develop an automatic SZ identification scheme using electroencephalogram (EEG) signals that can eradicate the aforementioned problems and support clinicians and researchers.

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) can be an indicator representing the early stage of Alzheimier's disease (AD). AD, which is the most common form of dementia, is a major public health problem worldwide. Efficient detection of MCI is essential to identify the risks of AD and dementia.

View Article and Find Full Text PDF

Background And Objective: Motor Imagery (MI) based Brain-Computer-Interface (BCI) is a rising support system that can assist disabled people to communicate with the real world, without any external help. It serves as an alternative communication channel between the user and computer. Electroencephalogram (EEG) recordings prove to be an appropriate choice for imaging MI tasks in a BCI system as it provides a non-invasive way for completing the task.

View Article and Find Full Text PDF

Discovering the concealed patterns of Electroencephalogram (EEG) signals is a crucial part in efficient detection of epileptic seizures. This study develops a new scheme based on Douglas-Peucker algorithm (DP) and principal component analysis (PCA) for extraction of representative and discriminatory information from epileptic EEG data. As the multichannel EEG signals are highly correlated and are in large volumes, the DP algorithm is applied to extract the most representative samples from EEG data.

View Article and Find Full Text PDF

Background: Electroencephalogram (EEG) signals are important for brain health monitoring applications. Characteristics of EEG signals are complex, being non-stationarity, aperiodic and nonlinear in nature. EEG signals are a combination of sustained oscillation and non-oscillation transients that are challenging to deal with using linear approaches.

View Article and Find Full Text PDF