Publications by authors named "Pierre-Olivier Schmit"

Plasma proteomics holds immense potential for clinical research and biomarker discovery, serving as a non-invasive "liquid biopsy" for tissue sampling. Mass spectrometry (MS)-based proteomics, thanks to improvement in speed and robustness, emerges as an ideal technology for exploring the plasma proteome for its unbiased and highly specific protein identification and quantification. Despite its potential, plasma proteomics is still a challenge due to the vast dynamic range of protein abundance, hindering the detection of less abundant proteins.

View Article and Find Full Text PDF

Introduction: The human plasma glycoproteome holds enormous potential to identify personalized biomarkers for diagnostics. Glycoproteomics has matured into a technology for plasma N-glycoproteome analysis but further evolution towards clinical applications depends on the clinical validity and understanding of protein- and site-specific glycosylation changes in disease.

Objectives: Here, we exploited the uniqueness of a patient cohort of genetic defects in well-defined glycosylation pathways to assess the clinical applicability of plasma N-glycoproteomics.

View Article and Find Full Text PDF

Blood analysis is one of the foundations of clinical diagnostics. In recent years, the analysis of proteins in blood samples by mass spectrometry has taken a jump forward in terms of sensitivity and the number of identified proteins. The recent development of parallel reaction monitoring with parallel accumulation and serial fragmentation (prm-PASEF) combines ion mobility as an additional separation dimension.

View Article and Find Full Text PDF

The Chromosome-centric Human Proteome Project (C-HPP) aims at identifying the proteins as gene products encoded by the human genome, characterizing their isoforms and functions. The existence of products has now been confirmed for 93.2% of the genes at the protein level.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based quantitative proteomic methods have become some of the major tools for protein biomarker discovery and validation. The recently developed parallel reaction monitoring-parallel accumulation-serial fragmentation (prm-PASEF) approach on a Bruker timsTOF Pro mass spectrometer allows the addition of ion mobility as a new dimension to LC-MS-based proteomics and increases proteome coverage at a reduced analysis time. In this study, a prm-PASEF approach was used for the multiplexed absolute quantitation of proteins in human plasma using isotope-labeled peptide standards for 125 plasma proteins, over a broad (10-10) dynamic range.

View Article and Find Full Text PDF

Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method exploits the multiplexing capability provided by the trapped ion mobility separation, allowing more than 200 peptides to be monitored over a 30 min liquid chromatography separation.

View Article and Find Full Text PDF

Top-Down approaches have an extremely high biological relevance, especially when it comes to biomarker discovery, but the necessary pre-fractionation constraints are not easily compatible with the robustness requirements and the size of clinical sample cohorts. We have demonstrated that intact protein profiling studies could be run on UHR-Q-ToF with limited pre-fractionation (Schmit et al., 2017) [1].

View Article and Find Full Text PDF

Unlabelled: Thanks to proteomics investigations, our vision of the role of different protein isoforms in the pathophysiology of diseases has largely evolved. The idea that protein biomarkers like tau, amyloid peptides, ApoE, cystatin, or neurogranin are represented in body fluids as single species is obviously over-simplified, as most proteins are present in different isoforms and subjected to numerous processing and post-translational modifications. Measuring the intact mass of proteins by MS has the advantage to provide information on the presence and relative amount of the different proteoforms.

View Article and Find Full Text PDF

Whole-cell fingerprinting by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in combination with a dedicated bioinformatic software tool (MALDI Biotyper 2.0) was used to identify 152 staphylococcal strains corresponding to 22 staphylococcal species. Spectra of the 152 isolates, previously identified at the species level using a sodA gene-based oligonucleotide array, were analyzed against the main spectra of 3,030 microorganisms.

View Article and Find Full Text PDF

Variations in proteins related to bacterial diversity may affect species identification performed using matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry. Using this method, we identified 110 Streptococcus agalactiae isolates characterized by serotyping and multilocus sequence typing. Serotype III and sequence type 23 strains expressed the widest variation in molecular weight of putative "species-identifying" biomarker ions.

View Article and Find Full Text PDF

Experimental NMR diffusion measure on polymers and on globular proteins are presented. These results, complemented with results found in the literature, enable a general description of effective fractal dimension for objects such as small organic molecules, sugars, polymers, DNA, and proteins. Results are compared to computational simulations as well as to theoretical values.

View Article and Find Full Text PDF