Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.
View Article and Find Full Text PDFThe performance of biological-originated blood vessels in clinical remains disappointing due to fast occlusion caused by acute thrombosis or long-standing inflammation. How to prevent rapid degradation and inhibit acute inflammation but maintain their high bioactivity is still a significant challenge. As a bioactive polyphenol in various traditional Chinese medicine, Corilagin (Cor) exhibits excellent anticoagulant, anti-inflammatory and rapid ROS consumption properties.
View Article and Find Full Text PDFAseptic inflammation and osteolysis triggered by the phagocytosis of implant wear particles by macrophages are important reasons for aseptic loosening (AL) in total joint replacement, which ultimately leads to implant failure. Therefore, the development of implants with long-term effectiveness in preventing AL is a pressing issue. In contrast to the conventional idea of reducing the occurrence of AL through anti-inflammatory treatment, we prepared implants based on a novel concept: to prevent AL by returning the dynamic balance of osteogenesis/osteolysis through dynamic modulation, which is expected to completely resolve the problem of AL.
View Article and Find Full Text PDFEutectogels represent an attractive option for various industrial applications that use deep eutectic solvents (DESs) as effective liquid active ingredients and offer remarkable stability, cost-effectiveness, and environmental friendliness. However, the biological applications of these compounds are limited. DESs are highly structurally tunable and exhibit remarkable biofunctionality and biocompatibility, conferring substantial benefits in the treatment of diseases.
View Article and Find Full Text PDFThe changes in the carbon emissions in China's provincial construction industries are of high complexity. It is essential to understand the changes in the construction carbon emissions (CCEs) in China on the provincial scale. This study evaluates the factors and structural paths of the changes in provincial CCEs in China between 2012 and 2017 using the structural path decomposition analysis.
View Article and Find Full Text PDFThe methyltransferase complex (MTC) deposits N6-adenosine (mA) onto RNA, whereas the microprocessor produces microRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B tends to form insoluble condensates with poor activity, with its level monitored by the 20S proteasome.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Chronic refractory wounds have become a serious threat to human health and are characterized by prolonged inflammation, recurrent bacterial infections, and elevated ROS levels. However, current therapeutic strategies usually target a unilateral healing function and are unable to tackle the complexity and sensitivity of chronic refractory wound healing. This study fabricated a biomimetic nanozyme based on rhein (Cu-rhein NSs), which effectively mimics the activity of superoxide dismutase (SOD) for scavenging various free radicals.
View Article and Find Full Text PDFIn response to the challenges faced by clinicians treating bone defects caused by various factors, various bone repair materials have been investigated, but the efficiency of bone healing still needs to be improved due to the acting of scaffolds only in a single stage of bone tissue regeneration. We investigated the potential of a novel 3D scaffold to support different stages of bone tissue regeneration, including initial inflammation, proliferation, and remodeling. Eu (0, 0.
View Article and Find Full Text PDFObjective: To explore the distribution of thrombin-antithrombin complex (TAT), plasmin-α2-antiplasmin inhibitor complex (PIC), thrombomodulin (TM), and tissue plasminogen activator-inhibitor complex (t-PAIC) in healthy older Chinese adults, and establish the reference intervals (RIs).
Methods: The Biotech Shine i2900 chemiluminescence immune assay was used to measure the plasma concentrations of TAT, PIC, TM, and t-PAIC in 1628 adults ≥ 60 years. The RIs were established using the 2.
The exploration of high-performance hydrogen evolution reaction (HER) catalysts is conducive to the development of clean hydrogen energy, yet still remains a challenge. Herein, we rapidly synthesize the MoC/MoS heterostructure on carbon paper (MoC/MoS-CP) carbothermal shock in only two seconds. The construction of the MoC/MoS heterostructure regulates the electronic structure of the Mo site and facilitates charge transfer during the HER process.
View Article and Find Full Text PDFRNA secondary structure (RSS) of primary microRNAs (pri-miRNAs) is a key determinant for miRNA production. Here we report that RNA helicase (RH) Brr2a, best known as a spliceosome component, modulates the structural complexity of pri-miRNAs to fine tune miRNA yield. Brr2a interacts with microprocessor component HYL1 and its loss reduces the levels of miRNAs derived from both intron-containing and intron-lacking pri-miRNAs.
View Article and Find Full Text PDFMethyltransferase complex (MTC) deposits 6-adenosine (m A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome.
View Article and Find Full Text PDFThe construction of doped molecular clusters is an intriguing way to perform bimetallic doping for electrocatalysts. However, efficiently harnessing the benefits of a doping strategy and alloy engineering to create a nanostructure for electrocatalytic application at the molecular level has consistently posed a challenge. Here we propose an in situ reconstruction strategy aimed at producing an alloy nanostructure through a pyrolysis process, originating from bowknot-like heterometallic clusters.
View Article and Find Full Text PDFOsteoarthritis (OA), which disables articular cartilage, affects millions of people. The self-healing capacity is inhibited by internal oxidative stress and external lubrication deficiency and enzymatic degradation. To overcome these challenges, a tailored cartilage-armor is designed to ameliorate the inflamed cartilage, which is implemented by a novel collagen type II (Col II)-binding peptide conjugated zwitterionic polymer (PSB--PColBP, PSP).
View Article and Find Full Text PDFBackground: Rheumatoid arthritis (RA) is a systemic and chronic autoimmune disease that is characterized by persistent joint inflammation. RA patients experience a considerably increased risk of cardiovascular-related morbidity and mortality. The current study investigated the association between triglyceride glucose (TyG) index and major adverse cardiovascular events (MACEs) in a predominantly male cohort of RA patients.
View Article and Find Full Text PDFDeveloping a hemostatic material suitable for rapid hemostasis remains a challenge. This study presents a novel aminated gelatin sponge cross-linked with dialdehyde starch, exhibiting excellent biocompatibility and hemostatic ability. This aminated gelatin sponge features hydrophilic surface and rich porous structure with a porosity of up to 80 %.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are produced from highly structured primary transcripts (pri-miRNAs) and regulate numerous biological processes in eukaryotes. Due to the extreme heterogeneity of these structures, the initial processing sites of plant pri-miRNAs and the structural rules that determine their processing have been predicted for many miRNAs but remain elusive for others. Here we used semi-active DCL1 mutants and advanced degradome-sequencing strategies to accurately identify the initial processing sites for 147 of 326 previously annotated Arabidopsis miRNAs and to illustrate their associated pri-miRNA cleavage patterns.
View Article and Find Full Text PDFSci Bull (Beijing)
August 2024
Given that it was a once-in-a-century emergency event, the confinement measures related to the coronavirus disease 2019 (COVID-19) pandemic caused diverse disruptions and changes in life and work patterns. These changes significantly affected water consumption both during and after the pandemic, with direct and indirect consequences on biodiversity. However, there has been a lack of holistic evaluation of these responses.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
Transition metal oxides are widely pursued as potent electrocatalysts for the oxygen evolution reaction (OER). However, single-metal chromium catalysts remain underexplored due to their intrinsic activity limitations. Herein, we successfully synthesize mixed-valence, nitrogen-doped CrO/CrO/CrN@NC nanoelectrocatalysts via one-step targeted pyrolysis techniques from a binuclear Cr-based complex (Cr(Salophen)(CHOH)), which is strategically designed as a precursor.
View Article and Find Full Text PDFCommencing with the breakdown of the diabetic osteoimmune microenvironment, multiple pathogenic factors, including hyperglycemia, inflammation, hypoxia, and deleterious cytokines, are conjointly involved in the progression of diabetic periodontal bone regeneration. Based on the challenge of periodontal bone regeneration treatment and the absence of real-time feedback of blood oxygen fluctuation in diabetes mellitus, a novel self-adaptive hyperthermia supramolecular cascade nano-reactor ACFDG is constructed via one-step supramolecular self-assembly strategy to address multiple factors in diabetic periodontal bone regeneration. Hyperthermia supramolecular ACFDG possesses high photothermal conversion efficiency (32.
View Article and Find Full Text PDFThe pursuit of multifunctional electrocatalysts holds significant importance due to their comprehension of material chemistry. Amorphous materials are particularly appealing, yet they pose challenges in terms of rational design due to their structural disorder and thermal instability. Herein, we propose a strategy that entails the tandem (low-temperature/250-350 °C) pyrolysis of molecular clusters, enabling preservation of the local short-range structures of the precursor Schiff base nickel (Ni[2(CHNNiO)]).
View Article and Find Full Text PDFBiomaterials with dual functions of osteoimmunomodulation and bone repair are very promising in the field of orthopedic materials. For this purpose, we prepared copper-based carbon dots (CuCDs) and doped them into oxychondroitin sulfate/poly-acrylamide hydrogel (OPAM) to obtain a hybrid hydrogel (CuCDs/OPAM). We evaluated its osteoimmunomodulatory and bone repair properties and .
View Article and Find Full Text PDFIn silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses.
View Article and Find Full Text PDFPortulacerebroside A (PCA), a cerebroside compound extracted from L., has been shown to suppress hepatocellular carcinoma (HCC) cells. This study aims to investigate the effectiveness of trimethyl chitosan-cysteine (TMC-Cys) nanocarrier in delivering PCA for HCC management and to elucidate the molecular mechanisms behind PCA's function.
View Article and Find Full Text PDF