Whether early life acetaminophen (APAP) exposures injure the developing lung is controversial. We sought to correlate murine pulmonary developmental expression profiles of to susceptibility to APAP exposure. P14 C57BL/6 mice were exposed to APAP (140 mg/kg x 1, IP) and assessed for evidence of a histologic, metabolic, functional, and/or transcriptional pulmonary response.
View Article and Find Full Text PDFToxicant exposure can lead to acute liver injury, characterized by hepatic reprogramming and wound healing. Hepatic stellate cells (HSC) play a key role in liver regeneration during wound healing by secreting fibrogenic factors and production of extracellular matrix (ECM). However, repetitive injury to the liver can lead to extensive scarring and liver fibrosis, indicating HSCs coordinate both regeneration and disease.
View Article and Find Full Text PDFBackground: Intestinal inflammation is a common factor in ~70% of patients diagnosed with primary sclerosing cholangitis. The TNF∆ARE+/- mouse overexpresses TNFα and spontaneously develops ileitis after weaning. The aim of this study was to examine the influence of ileitis and TNFα overexpression on hepatic injury, fibrosis, inflammation, and bile acid homeostasis.
View Article and Find Full Text PDFOne in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines.
View Article and Find Full Text PDFA diverse antibody repertoire is essential for humoral immunity. Antibody diversification requires the introduction of deoxyuridine (dU) mutations within immunoglobulin genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR). dUs are normally recognized and excised by the base excision repair (BER) protein uracil-DNA glycosylase 2 (UNG2).
View Article and Find Full Text PDF1,4-Dioxane (DX), an emerging water contaminant, is classified as a Group 2B liver carcinogen based on animal studies. Understanding of the mechanisms of action of DX liver carcinogenicity is important for the risk assessment and control of this environmental pollution. Previous studies demonstrate that high-dose DX exposure in mice through drinking water for up to 3 months caused liver mild cytotoxicity and oxidative DNA damage, a process correlating with hepatic CYP2E1 induction and elevated oxidative stress.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) are some of the most challenging target classes in drug discovery. Highly sensitive detection techniques are required for the identification of chemical modulators of PPIs. Here, we introduce PPI confocal nanoscanning (PPI-CONA), a miniaturized, microbead based high-resolution fluorescence imaging assay.
View Article and Find Full Text PDFBackground And Aims: Chronic liver disease due to metabolic dysfunction-associated steatohepatitis (MASH) is a rapidly increasing global epidemic. MASH progression is a consequence of the complex interplay between inflammatory insults and dysregulated hepatic immune responses. T lymphocytes have been shown to accumulate in the liver during MASH, but the cause and consequence of T cell accumulation in the liver remain unclear.
View Article and Find Full Text PDFHereditary fructose intolerance (HFI) is a painful and potentially lethal genetic disease caused by a mutation in aldolase B resulting in accumulation of fructose-1-phosphate (F1P). No cure exists for HFI and treatment is limited to avoid exposure to fructose and sugar. Using aldolase B deficient mice, here we identify a yet unrecognized metabolic event activated in HFI and associated with the progression of the disease.
View Article and Find Full Text PDFIntroduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7).
View Article and Find Full Text PDFPurpose: Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of chronic kidney disease and end-stage renal disease. One potential mechanism underlying cellular dysfunction contributing to kidney disease is aberrant protein post-translational modifications. Lysine acetylation is associated with cellular metabolic flux and is thought to be altered in patients with diabetes and dysfunctional renal metabolism.
View Article and Find Full Text PDFPelvic organ prolapse (POP), a downward descent of the vagina and/or uterus through the vaginal canal, is a prevalent condition affecting up to 40% of women. Several risk factors of POP have been identified, including childbirth, connective tissue defects, and chronic intra-abdominal pressure; however, the underlying etiologies of POP development are not fully understood, leading to a high burden on patients and the healthcare systems. The uterosacral ligaments are key support structures of the uterus and upper vagina.
View Article and Find Full Text PDFPhage viruses shape the evolution and virulence of their bacterial hosts. The genome encodes several stress-inducible prophages. The Gifsy-1 prophage terminase protein, whose canonical function is to process phage DNA for packaging in the virus head, unexpectedly acts as a transfer ribonuclease (tRNase) under oxidative stress, cleaving the anticodon loop of tRNA.
View Article and Find Full Text PDFIntraepithelial lymphocytes (IELs) are T cells important for the maintenance of barrier integrity in the intestine. Colon IELs are significantly reduced in both MyD88-deficient mice and those lacking an intact microbiota, suggesting that MyD88-mediated detection of bacterial products is important for the recruitment and/or retention of these cells. Here, using conditionally deficient MyD88 mice, we show that myeloid cells are the key mediators of TCRαβ+ IEL recruitment to the colon.
View Article and Find Full Text PDFColorectal cancer has been linked to chronic colitis and red meat consumption, which can increase colonic iron and heme. Heme oxygenase-1 ( ) metabolizes heme and releases ferrous iron, but its role in colonic tumorigenesis is not well-described. Recent studies suggest that ferroptosis, the iron-dependent form of cell death, protects against colonic tumorigenesis.
View Article and Find Full Text PDFBackground: The developmental immaturity of the innate immune system helps explains the increased risk of infection in the neonatal period. Importantly, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for the prevention of hepatocyte apoptosis in adult animals, yet whether developmental immaturity of these pathways increases the risk of hepatic injury in the neonatal period is unknown.
Methods: Using a murine model of endotoxemia (LPS 5 mg/kg IP x 1) in neonatal (P3) and adult mice, we evaluated histologic evidence of hepatic injury and apoptosis, presence of p65/NFκB and c-Jun/AP1 activation and associated transcriptional regulation of apoptotic genes.
Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is a major global health concern, representing one of the leading causes of cancer-related deaths. Despite various treatment options, the prognosis for HCC patients remains poor, emphasizing the need for a deeper understanding of the factors contributing to HCC development. This study investigates the role of poly(ADP-ribosyl)ation in hepatocyte maturation and its impact on hepatobiliary carcinogenesis.
View Article and Find Full Text PDFBackground & Aims: Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus.
View Article and Find Full Text PDFThe atomic-resolution structural information that X-ray crystallography can provide on the binding interface between a Fab and its cognate antigen is highly valuable for understanding the mechanism of interaction. However, many Fab:antigen complexes are recalcitrant to crystallization, making the endeavor a considerable effort with no guarantee of success. Consequently, there have been significant steps taken to increase the likelihood of Fab:antigen complex crystallization by altering the Fab framework.
View Article and Find Full Text PDFExcessive intake of sugar, and particularly fructose, is closely associated with the development and progression of metabolic syndrome in humans and animal models. However, genetic disorders in fructose metabolism have very different consequences. While the deficiency of fructokinase, the first enzyme involved in fructose metabolism, is benign and somewhat desirable, missense mutations in the second enzyme, aldolase B, causes a very dramatic and sometimes lethal condition known as hereditary fructose intolerance (HFI).
View Article and Find Full Text PDFBackground: We have developed a mouse model of Parenteral Nutrition Associated Cholestasis (PNAC) in which combining intestinal inflammation and PN infusion results in cholestasis, hepatic macrophage activation, and transcriptional suppression of bile acid and sterol signaling and transport. In the liver, the master circadian gene regulators Bmal/Arntl and Clock drive circadian modulation of hepatic functions, including bile acid synthesis. Once activated, Bmal and Clock are downregulated by several transcription factors including Reverbα (Nr1d1), Dbp (Dbp), Dec1/2 (Bhlhe40/41), Cry1/2 (Cry1/2) and Per1/2 (Per1/2).
View Article and Find Full Text PDF