Gas exchange between man and plants in a closed ecological system based on atmosphere regeneration by plant photosynthesis is made consistent by attaining the equilibrium of human CO2 discharge and the productivity of the gas consuming bioregenerator. In this case the gas exchange might be, however, qualitatively disturbed from the equilibrium in terms of oxygen making it accumulate or decrease continuously in the air of the system. Gas exchange equilibrium in terms of O2 was attained in long-term experiments by equality of the human respiration coefficient and the plant assimilation coefficient.
View Article and Find Full Text PDFMaterial support of all manned space flights so far has been provided from a prestored stock of substances or replenished from the Earth's biosphere. Exploration of space will, however, become real only when man is able to break away from Earth completely, when he will be accompanied by a system providing everything necessary to sustain full-valued life for an unlimited time. The only known system to date meeting this requirement is the Earth's biosphere.
View Article and Find Full Text PDFWe describe the experimental system having maximal possible closure of material recycling in an ecosystem, including people and plants, which was carried out in a hermetically sealed experimental complex "BIOS-3", 315 m2 in volume. The system included 2 experimentators and 3 phytotrons with plants (total sowing area of 63 m2). Plants were grown with round-the-clock lamp irradiation with 130 Wm-2 PAR intensity.
View Article and Find Full Text PDF