Deep brain stimulation (DBS) can ameliorate motor symptoms in Parkinson's disease (PD), but its mechanism remains unclear. This work constructs a multi-scale brain model using the fMRI data from 27 PD patients with subthalamic DBS and 30 healthy controls. The model fits microscopic coupling parameters in the cortico-basal ganglia-thalamic neural loop to match individual connectivity, finding the "push-pull" effect of basal ganglia network.
View Article and Find Full Text PDFHead and neck CTA requires fine-detail evaluation, including characterization of potentially very small vessels and intrastent lumina. Blooming artifacts also hinder evaluation. The purpose of this study was to evaluate image quality of ultrahigh-resolution (UHR) photon-counting detector (PCD) CTA of the head and neck and to explore variation of image quality across body vascular (Bv) reconstruction kernels.
View Article and Find Full Text PDFBackground: White matter (WM) fiber tracts in the brainstem communicate with various regions in the cerebrum, cerebellum, and spinal cord. Clinically, small lesions, malformations, or histopathological changes in the brainstem can cause severe neurological disorders. A direct and non-invasive assessment approach could bring valuable information about the intricate anatomical variations of the white matter fiber tracts and nuclei.
View Article and Find Full Text PDFDue to a high degree of symptom overlap in the early stages, with movement disorders predominating, Parkinson's disease (PD) and multiple system atrophy (MSA) may exhibit a similar decline in motor areas, yet they differ in their spread throughout the brain, ultimately resulting in two distinct diseases. Drawing upon neuroimaging analyses and altered motor cortex excitability, potential diffusion mechanisms were delved into, and comparisons of correlations across distinct disease groups were conducted in a bid to uncover significant pathological disparities. We recruited thirty-five PD, thirty-seven MSA, and twenty-eight matched controls to conduct clinical assessments, electromyographic recording, and magnetic resonance imaging scanning during the "on medication" state.
View Article and Find Full Text PDFObjective: This study aimed to examine the structural alterations of the deep gray matter (DGM) in the basal ganglia circuitry of Parkinson's disease (PD) patients with freezing of gait (FOG) using quantitative susceptibility mapping (QSM) and neuromelanin-sensitive magnetic resonance imaging (NM-MRI).
Methods: Twenty-five (25) PD patients with FOG (PD-FOG), 22 PD patients without FOG (PD-nFOG), and 30 age- and sex-matched healthy controls (HCs) underwent 3-dimensional multi-echo gradient recalled echo and NM-MRI scanning. The mean volume and susceptibility of the DGM on QSM data and the relative contrast (NM) and volume (NM) of the substantia nigra pars compacta on NM-MRI were analyzed among groups.
Background: Parkinson's disease (PD) is associated with the loss of neuromelanin (NM) and increased iron in the substantia nigra (SN). Magnetization transfer contrast (MTC) is widely used for NM visualization but has limitations in brain coverage and scan time. This study aimed to develop a new approach called Proton-density Enhanced Neuromelanin Contrast in Low flip angle gradient echo (PENCIL) imaging to visualize NM in the SN.
View Article and Find Full Text PDFIntroduction: Although locus coeruleus (LC) has been demonstrated to play a critical role in the cognitive function of Parkinson's disease (PD), the underlying mechanism has not been elucidated. The objective was to investigate the relationship among LC degeneration, cognitive performance, and the glymphatic function in PD.
Methods: In this retrospective study, 71 PD subjects (21 with normal cognition; 29 with cognitive impairment (PD-MCI); 21 with dementia (PDD)) and 26 healthy controls were included.
Background: Nigrosome 1 (N1), the largest nigrosome region in the ventrolateral area of the substantia nigra pars compacta, is identifiable by the "N1 sign" in long echo time gradient echo MRI. The N1 sign's absence is a vital Parkinson's disease (PD) diagnostic marker. However, it is challenging to visualize and assess the N1 sign in clinical practice.
View Article and Find Full Text PDFImaging-derived phenotypes (IDPs) have been increasingly used in population-based cohort studies in recent years. As widely reported, magnetic resonance imaging (MRI) is an important imaging modality for assessing the anatomical structure and function of the brain with high resolution and excellent soft-tissue contrast. The purpose of this article was to describe the imaging protocol of the brain MRI in the China Phenobank Project (CHPP).
View Article and Find Full Text PDFIncreasing the signal-to-noise ratio (SNR) has always been of critical importance for magnetic resonance imaging. Although increasing field strength provides a linear increase in SNR, it is more and more costly as field strength increases. Therefore, there is a major effort today to use signal processing methods to improve SNR since it is more efficient and economical.
View Article and Find Full Text PDFParkinson's disease (PD) diagnosis based on magnetic resonance imaging (MRI) is still challenging clinically. Quantitative susceptibility maps (QSM) can potentially provide underlying pathophysiological information by detecting the iron distribution in deep gray matter (DGM) nuclei. We hypothesized that deep learning (DL) could be used to automatically segment all DGM nuclei and use relevant features for a better differentiation between PD and healthy controls (HC).
View Article and Find Full Text PDFBackground: Differential diagnosis of essential tremor (ET) and Parkinson's disease (PD) can still be a challenge in clinical practice. These two tremor disorders may have different pathogenesis related to the substantia nigra (SN) and locus coeruleus (LC). Characterizing neuromelanin (NM) in these structures may help improve the differential diagnosis.
View Article and Find Full Text PDFBackground: The central autonomic network (CAN) plays a critical role in the body's sympathetic and parasympathetic control. However, functional connectivity (FC) changes of the CAN in patients with multiple system atrophy (MSA) remain unknown.
Purpose: To investigate FC alterations of CAN in MSA patients.
Objective: Functional MRI (fMRI) has been used to investigate the therapeutic mechanisms underlying deep brain stimulation (DBS) for Parkinson's disease (PD). However, the alterations in stimulation site-seeded functional connectivity induced by DBS at the internal globus pallidus (GPi) remain unclear. Furthermore, whether DBS-modulated functional connectivity is differentially affected within particular frequency bands remains unknown.
View Article and Find Full Text PDFAberrant dynamic switches between internal brain states are believed to underlie motor dysfunction in Parkinson's disease. Deep brain stimulation of the subthalamic nucleus is a well-established treatment for the motor symptoms of Parkinson's disease, yet it remains poorly understood how subthalamic stimulation modulates the whole-brain intrinsic motor network state dynamics. To investigate this, we acquired resting-state functional magnetic resonance imaging time-series data from 27 medication-free patients with Parkinson's disease (mean age: 64.
View Article and Find Full Text PDFBackground And Purpose: Early diagnosis of Parkinson's disease (PD) is still a clinical challenge. Most previous studies using manual or semi-automated methods for segmenting the substantia nigra (SN) are time-consuming and, despite raters being well-trained, individual variation can be significant. In this study, we used a template-based, automatic, SN subregion segmentation pipeline to detect the neuromelanin (NM) and iron features in the SN and SN pars compacta (SNpc) derived from a single 3D magnetization transfer contrast (MTC) gradient echo (GRE) sequence in an attempt to develop a comprehensive imaging biomarker that could be used to diagnose PD.
View Article and Find Full Text PDFThe visualization and identification of the deep cerebellar nuclei (DCN) (dentate [DN], interposed [IN] and fastigial nuclei [FN]) are particularly challenging. We aimed to visualize the DCN using quantitative susceptibility mapping (QSM), predict the contrast differences between QSM and T2* weighted imaging, and compare the DCN volume and susceptibility in movement disorder populations and healthy controls (HCs). Seventy-one Parkinson's disease (PD) patients, 39 essential tremor patients, and 80 HCs were enrolled.
View Article and Find Full Text PDFCompared with MR plain scanning, gadolinium (Gd)-enhanced MR scanning can provide more diagnostic information. Gadopentetate dimeglumine is generally used as an MR enhancement contrast agent in some countries. It is a member of linear Gd-based contrast agents (GBCAs) which are considered more likely to release free Gd ions (Gd) than macrocyclic GBCAs.
View Article and Find Full Text PDFBackground: Language deficits frequently occur during the prodromal stages of Alzheimer's disease (AD). However, the characteristics of linguistic impairment and its underlying mechanism(s) remain to be explored for the early diagnosis of AD.
Methods: The percentage of silence duration (PSD) of 324 subjects was analyzed, including patients with AD, amnestic mild cognitive impairment (aMCI), and normal controls (NC) recruited from the China multi-center cohort, and the diagnostic efficiency was replicated from the Pitt center cohort.
MRI has been used to develop biomarkers for movement disorders such as Parkinson disease (PD) and other neurodegenerative disorders with parkinsonism such as progressive supranuclear palsy and multiple system atrophy. One of these imaging biomarkers is neuromelanin (NM), whose integrity can be assessed from its contrast and volume. NM is found mainly in certain brain stem structures, namely, the substantia nigra pars compacta (SNpc), the ventral tegmental area, and the locus coeruleus.
View Article and Find Full Text PDFBackground: Previous studies have revealed abnormality of iron deposition in the brain of patients with depression. The progression of iron deposition associated with depression remains to be elucidated.
Methods: This is a longitudinal study.
Objective: Functional connectivity shows the ability to predict the outcome of subthalamic nucleus deep brain stimulation (DBS) in Parkinson disease (PD). However, evidence supporting its value in predicting the outcome of globus pallidus internus (GPi) DBS remains scarce. In this study the authors investigated patient-specific functional connectivity related to GPi DBS outcome in PD and established connectivity models for outcome prediction.
View Article and Find Full Text PDFThe subthalamic nucleus (STN) and globus pallidus internus (GPi) are the two most common and effective target brain areas for deep brain stimulation (DBS) treatment of advanced Parkinson's disease. Although DBS has been shown to restore functional neural circuits of this disorder, the changes in topological organization associated with active DBS of each target remain unknown. To investigate this, we acquired resting-state functional magnetic resonance imaging (fMRI) data from 34 medication-free patients with Parkinson's disease that had DBS electrodes implanted in either the subthalamic nucleus or internal globus pallidus (n = 17 each), in both ON and OFF DBS states.
View Article and Find Full Text PDF