Publications by authors named "Nanthi Bolan"

Tungsten (W) is a rare element and present in the earth's crust mainly as iron, aluminium, and calcium minerals including wolframite and scheelite. This review aims to offer an overview on the current knowledge on W pollution in complex environmental settlings, including terrestrial and aquatic ecosystems, linking to its natural and anthropogenic sources, behavior in soil and water, environmental and human health hazards, and remediation strategies. Tungsten is used in many alloys mainly as wafers, which have wide industrial applications, such as incandescent light bulb filaments, X-ray tubes, arc welding electrodes, radiation shielding, and industrial catalysts.

View Article and Find Full Text PDF

The effect of trivalent metal-modified biochar on the stability and mitigation of fluoride ions (F) in contaminated soils remains largely unexplored, despite biochar's extensive application in F-contaminated soil. The mineral metal-modified biochar has the potential to serve as an efficient solution for soil contaminated with F. In this study, pristine-pinecone biochar (P-BC) and AlCl-modified pinecone biochar (A-BC) were synthesized and then utilized to remediate the soil that had been contaminated with F.

View Article and Find Full Text PDF

Understanding the factors that drive PM concentrations in cities with varying population and land areas is crucial for promoting sustainable urban population health. This knowledge is particularly important for countries where air pollution is a significant challenge. Most existing studies have investigated either anthropogenic or environmental factors in isolation, often in limited geographic contexts; however, this study fills this knowledge gap.

View Article and Find Full Text PDF

Biogas residues (i.e., digestate) are rich in NH that has great agricultural value but environmental risk if not recycled.

View Article and Find Full Text PDF

The increasing trend of using agricultural wastes follows the concept of "waste to wealth" and is closely related to the themes of sustainable development goals (SDGs). Carbon-neutral technologies for waste management have not been critically reviewed yet. This paper reviews the technological trend of agricultural waste utilization, including composting, thermal conversion, and anaerobic digestion.

View Article and Find Full Text PDF

Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH) and volatile sulfur compounds (VSCs), including hydrogen sulfide (HS), and methyl mercaptan (CHS), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold.

View Article and Find Full Text PDF

Long-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health.

View Article and Find Full Text PDF

Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites, i.e., metabolomes, in the soil.

View Article and Find Full Text PDF

Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics.

View Article and Find Full Text PDF

Raw liquid anaerobic digestate was synthesised into nutrient-dense solid digestates via acidification and evaporation. Acidification retained ammonium in the digestate whilst also donating the anion to free ammonium to form an ammonium salt. Digestate was treated with the addition of sulphuric, nitric, and phosphoric acid resulting in the formation of ammonium sulphate, ammonium nitrate and ammonium phosphate, respectively then evaporated into a solid fertiliser product.

View Article and Find Full Text PDF

This study examined the effectiveness of pristine biochar (BC) and Fe-functionalized biochar (FBC) in remediating As-Sb co-contaminated soil, and revealed the resulting impact on soil enzymatic activities and bacterial communities. Results from incubation experiments showed that the 1.5% FBC treatment reduced the bioavailable As and Sb concentration by 13.

View Article and Find Full Text PDF

The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils.

View Article and Find Full Text PDF

Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments.

View Article and Find Full Text PDF

Plastic and mixed plastic waste (PW) has received increased worldwide attention owing to its huge rate of production, high persistency in the environment, and unsustainable waste management practices. Therefore, sustainable PW management and upcycling approaches are imperative to achieve the objectives of the United Nations Sustainable Development Goals. Numerous recent studies have shown the application and feasibility of various PW conversion techniques to produce materials with better economic value.

View Article and Find Full Text PDF

Biodegradable mulches are widely recognized as ecologically friendly substances. However, their degradation percentage upon entering soils may vary based on mulch type and soil microbial activities, raising concerns about potential increases in microplastics (MPs). The effects of using different types of mulch on soil carbon pools and its potential to accelerate their depletion have not yet well understood.

View Article and Find Full Text PDF

The beneficial utilization of potentially increasing urban green waste (UGW) is critical for sustainable urban development in China. In this study, UGW was pyrolyzed at different temperatures, and the resulting biochar was used to amend Cd-contaminated soils to grow cabbage. Our results showed that the Cd adsorption capacity of UGW-biochar was positively correlated with the surface area, O/C, and (O+N)/C value of biochar.

View Article and Find Full Text PDF

Arsenic poisoning in agricultural soil is caused by both natural and man-made processes, and it poses a major risk to crop production and human health. Soil quality, agricultural production, runoff, ingestion, leaching, and absorption by plants are all influenced by these processes. Microbial consortia have become a feasible bioremediation technique in response to the urgent need for appropriate remediation solutions.

View Article and Find Full Text PDF

Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide.

View Article and Find Full Text PDF

Seed nano-priming can be used as an advanced technology for enhancing seed germination, plant growth, and crop productivity; however, the potential role of seed nano-priming in ameliorative cadmium (Cd) bio-toxicity under Cd stress has not yet been sufficiently investigated. Therefore, in this study we investigated the beneficial impacts of seed priming with low (L) and high (H) concentrations of nanoparticles including nSiO (50/100 mg L), nTiO (20/60 mg L), nZnO (50/100 mg L), nFeO (100/200 mg L), nCuO (50/100 mg L), and nCeO (50/100 mg L) on lettuce growth and antioxidant enzyme activities aiming to assess their efficacy for enhancing plant growth and reducing Cd phytotoxicity. The results showed a significant increase in plant growth, biomass production, antioxidant enzyme activities, and photosynthetic efficiency in lettuce treated with nano-primed nSiH + Cd (100 mg L), nTiH + Cd (60 mg L), and nZnL + Cd (50 mg L) under Cd stress.

View Article and Find Full Text PDF

Biochar can be used for multifunctional applications including the improvement of soil health and carbon storage, remediation of contaminated soil and water resources, mitigation of greenhouse gas emissions and odorous compounds, and feed supplementation to improve animal health. A healthy soil preserves microbial biodiversity that is effective in supressing plant pathogens and pests, recycling nutrients for plant growth, promoting positive symbiotic associations with plant roots, improving soil structure to supply water and nutrients, and ultimately enhancing soil productivity and plant growth. As a soil amendment, biochar assures soil biological health through different processes.

View Article and Find Full Text PDF

Additives may be present in amounts higher than 50% within plastic objects. Additives in plastics can be gradually released from microplastics (MPs) into the aquatic environment during their aging and fragmentation because most of them do not chemically react with the polymers. Some are known to be hazardous substances, which can cause toxicity effects on organisms and pose ecological risks.

View Article and Find Full Text PDF

Arsenic (As) poisoning in groundwater and rice paddy soil has increased globally, impacting human health and food security. There is an urgent need to deal with As-contaminated groundwater and soil. Biochar can be a useful remedy for toxic contaminants.

View Article and Find Full Text PDF