Polyethersulfone (PES) is a polymeric permeable material used in ultrafiltration (UF) membranes due to its high thermomechanical and chemical stability. The hydrophobic nature of PES membranes renders them prone to fouling and restricts the practical applications of PES in the fabrication of water treatment membranes. The present study demonstrates a non-solvent-induced phase separation (NIPS) approach to modifying PES membranes with different concentrations of discrete TiO nanotubes (TNTs).
View Article and Find Full Text PDFModification of carbon nitride based polymeric 2D materials for tailoring their optical, electronic and chemical properties for various applications has gained significant interest. The present report demonstrates the synthesis of a novel modified carbon nitride framework with a remarkable 3:5 C:N stoichiometry (CN) and an electronic bandgap of 1.76 eV, by thermal deammoniation of the melem hydrazine precursor.
View Article and Find Full Text PDFA large signal direct current (DC) bias and a small signal microwave bias were simultaneously applied to TiO nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO nanotubes and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time.
View Article and Find Full Text PDFThis paper presents a unique integrated UV light sensing concept and introduces a device with a detection limit of 1.96 nW cm. The combination of a high quality factor, a microwave planar resonator (Q ∼ 50 000) with a semiconducting nanomaterial enables a revolutionary potential paradigm for photodetection of low light intensities and small form factors.
View Article and Find Full Text PDFTitanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography.
View Article and Find Full Text PDFAnodically formed, vertically oriented, self-organized cylindrical TiO nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs.
View Article and Find Full Text PDFIn this study, the effects of a phosphonate molecular monolayer adsorbed on the surface of a free-standing self-organized TiO2 nanotube membrane, on the microwave photoresponse of the membrane are presented. This phenomenon is monitored using planar microwave sensors. A double ring resonator is utilized to monitor the permittivity and conductivity variation on the monolayer coated membrane and the sensor environment separately.
View Article and Find Full Text PDF