Chemosphere
December 2024
Biochem Biophys Rep
September 2024
Selenium, an essential micronutrient with potent anticancer and antioxidant properties, the inorganic form of selenium is highly toxic, while organic and elemental nanoforms are more bioavailable and less toxic and have gained attention owing to their dietary and clinical relevance. This study aims to optimize conditions for the biosynthesis and production of elemental selenium nanoparticles for selenium supplements using marine microalgae, Nannochloropsis oceanica CASA CC201. The 10 mM precursor solution treated with 1 % of the algal extract (10:1 ratio of precursor and algal extract, respectively) was shown to be the optimal concentration for synthesizing highly stable selenium nanoparticles with a size of 183 nm and a zeta potential of -38.
View Article and Find Full Text PDFMicroalgae's ability to grow in poultry slaughterhouse wastewater (PSHWW) is attracting interest for low-cost biomass production and wastewater treatment. In this study, PSHWW is evaluated by the cultivation of Chlorella sp. andNeochloris sp.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2022
Prenatal supplementation of high-value PUFA (HVPUFA) is essential for adequate brain development in infants. As marine microalgal derived omega-3 fatty acids are considered an alternative source of fish oil, their neuroprotective role on monosodium glutamate (MSG)-induced neurotoxicity, bioavailability, and disease prevention in first-generation (F) animals need to be explored at molecular level. This study tested the long term supplementation of microalgal derived ω-3 PUFAs from parent rats to its offspring rats and studied the neuroprotective role in monosodium glutamate (MSG)-induced neurotoxicity in F rats.
View Article and Find Full Text PDFChemosphere
April 2022
Microalgae are the most attractive renewable energy sources for the production of biofuels because of their luxurious growth and lipid accumulation ability in diverse nutritional conditions. In the present study, Desmodesmus sp. VV2, an indigenous microalga, was evaluated for its biodiesel potential using Response Surface Methodology (RSM) to improve the lipid accumulation with the combination of nutrients stress NaNO starvation, CaCl depletion, and supplementation of magnesium oxide nanoparticles (MgO).
View Article and Find Full Text PDFMarine macroalgae offer an endurable source of renewable biomass, which do not require cultivable area, fertilizers for cultivation for bioproducts production. In this study, marine brown macroalga Padina tetrastromatica as an alternate sustainable feedstock for the production of liquid fuels. Padina tetrastromatica biomass was collected from Mandapam; the coastal region of Rameswaram, Tamil Nadu, India.
View Article and Find Full Text PDFUnlabelled: Microalgae are considered a rich source of high-value metabolites with an array of nutraceutical and pharmaceutical applications. Different strategies have been developed for cultivating microalgae at large-scale photobioreactors but high cost and low productivity are the major hurdles. Optimizing the composition of media for the cultivation of microalgae to induce biomass production and high-value metabolite accumulation has been considered as an important factor for sustainable product development.
View Article and Find Full Text PDFAim: This study investigated the effect of several metabolic enhancers on the expression of fatty acid biosynthetic genes and their influence on the production of high-value PUFA in the marine microalgae Isochrysis sp., CASA CC 101.
Methods And Results: The effect of the presence of iron (Fe), nicotinic acid (NIC), methyl jasmonate (MJ) and thidiazuron (TDZ) on the expression of the fatty acid desaturase genes Δ6Des, Δ5Des and Δ4Des was studied in cultures of the marine microalga Isochrysis sp.
Bimetallic or alloy nanoparticles (NPs) have improved properties compared to their monometallic forms. Microalgae being rich in biocompatible reductants and being ecofriendly are potential sources to synthesize fuctionalized NPs. In this study, biosynthesis of silver, gold, and bimetallic NPs was carried out bioreduction using aqueous extract of algal isolate , inhabitant of non-arable land.
View Article and Find Full Text PDFCASA CC202, a potent freshwater microalga is being used as a biofuel feedstock, which accumulates 2.27 fold lipid during nitrogen stress induction. Upon nitrogen starvation, undergoes biochemical and metabolic changes that perturb the cell to cope up the stress condition.
View Article and Find Full Text PDFEssential trace element selenium in association with selenoproteins, which is found in almost all organisms except higher plants and fungi, is involved in various biological functions. Advancement in the field of whole genome sequencing and data analyzing bioinformatic tools led to the accumulation of genome information of organisms. However, selenoproteins are unique and it needs specialized genomics tool for its identification as well as characterization.
View Article and Find Full Text PDFThe aim of this study is to analyze the effect of two plant growth regulators on selective modulation of nutraceutically important fatty acids. Exogenous application of methyl jasmonate (MeJA) promoted microalgal growth compared to control. Treatment with 10 ppm salicylic acid (SA) induced significantly higher lipid production of 475 mg/L (2.
View Article and Find Full Text PDFA newly isolated culture, Pseudomonas guariconesis, is reported for the first time for lipase production. Various process parameters affecting enzyme production were optimized through statistical design experiments. The Plackett-Burman experimental design was used for screening 10 parameters for lipase production, which was further optimized using the central composite design of response surface methodology.
View Article and Find Full Text PDFBackground: Isochrysis sp. is a marine microalga, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The potential use of its biomass as an alternative source of polyunsaturated fatty acids (PUFAs) has not been studied in animal models.
View Article and Find Full Text PDFAn eco-friendly cell wall digestion strategy was developed to enhance the availability of nutritionally important bio molecules of edible microalgae and exploit them for cloning, transformation, and expression of therapeutic proteins. Microalgae are the source for many nutritionally important bioactive compounds and potential drugs. Even though edible microalgae are rich in nutraceutical, bioavailability of all these molecules is very less due to their rigid recalcitrant cell wall.
View Article and Find Full Text PDFMicroalga is the only feedstock that has the theoretical potential to completely replace the energy requirements derived from fossil fuels. However, commercialization of this potential source for fuel applications is hampered due to many technical challenges with harvesting of biomass being the most energy intensive process among them. The fresh water microalgal species, , has been widely recognized as a potential feedstock for production of biodiesel (Mandotra et al.
View Article and Find Full Text PDFThe present study aims to evaluate the effect of different concentration of natural auxin, Indole-3 acetic acid (IAA) on growth, lipid yield, PUFA and EPA accumulation in Nannochloropsis oceanica CASA CC201. It was observed that the, treatment with 10ppm concentration of IAA resulted in high cell number 579.5×10cells/ml than the control (215.
View Article and Find Full Text PDFBioresour Technol
October 2017
In this study, the improved biomass (1.6 folds) and lipid (1.3 folds) productivities in Synechocystis sp.
View Article and Find Full Text PDFScenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.
View Article and Find Full Text PDFIntroduction: Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation.
View Article and Find Full Text PDFBioresour Technol
February 2016
The experimental results revealed that the 2.27-fold lipid yield was enhanced in nitrogen-depleted condition (226 mg/L) when compared to nitrogen rich condition (99.33 mg/L).
View Article and Find Full Text PDFFtsE is one of the earliest cell division proteins that assembles along with FtsX at the mid-cell site during cell division in Escherichia coli. Both these proteins are highly conserved across diverse bacterial genera and are predicted to constitute an ABC transporter type complex, in which FtsE is predicted to bind ATP and hydrolyse it, and FtsX is predicted to be an integral membrane protein. We had earlier reported that the MtFtsE of the human pathogen, Mycobacterium tuberculosis, binds ATP and interacts with MtFtsX on the cell membrane of M.
View Article and Find Full Text PDFXylanases are a group of depolymerizing enzymes often used for the hydrolysis of xylan (present in hemicellulose) to monomeric sugars and comprise endo-xylanases (EC 3.2.1.
View Article and Find Full Text PDF