Publications by authors named "MAZARE"

The term "aerophilic surface" is used to describe superhydrophobic surfaces in the Cassie-Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge.

View Article and Find Full Text PDF

Improved living conditions have led to an increase in life expectancy worldwide. However, as people age, the risk of vascular disease tends to increase due to the accumulation and buildup of plaque in arteries. Vascular stents are used to keep blood vessels open.

View Article and Find Full Text PDF

Objective: Asthma, a chronic inflammatory disease with diverse pathomechanisms, presents challenges in developing personalized diagnostic and therapeutic approaches. This review aims to provide a comprehensive overview of the role of exosomes, small extracellular vesicles, in asthma pathophysiology and explores their potential as diagnostic biomarkers and therapeutic tools.

Methods: A literature search was conducted to identify recent studies investigating the involvement of exosomes in asthma.

View Article and Find Full Text PDF

Anodic titanium dioxide (TiO) nanostructures, i.e., obtained by electrochemical anodization, have excellent control over the nanoscale morphology and have been extensively investigated in biomedical applications owing to their sub-100 nm nanoscale topography range and beneficial effects on biocompatibility and cell interactions.

View Article and Find Full Text PDF

Titanium dioxide (TiO) is the material of choice for photocatalytic and electrochemical applications owing to its outstanding physicochemical properties. However, its wide bandgap and relatively low conductivity limit its practical application. Modifying TiO with carbon species is a promising route to overcome these intrinsic complexities.

View Article and Find Full Text PDF

Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO nanoparticles in an aqueous Ni solution. UV illumination creates a Ni/TiO/Ti photocatalyst that self-activates and, over time, produces H at a higher rate.

View Article and Find Full Text PDF

Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater.

View Article and Find Full Text PDF

Wetting of solid surfaces is crucial for biological and industrial processes but is also associated with several harmful phenomena such as biofouling and corrosion that limit the effectiveness of various technologies in aquatic environments. Despite extensive research, these challenges remain critical today. Recently, we have developed a facile UV-grafting technique to covalently attach silicone-based coatings to solid substrates.

View Article and Find Full Text PDF

Efficient cathodes for the hydrogen evolution reaction (HER) in acidic water electrolysis rely on the use of expensive platinum group metals (PGMs). However, to achieve economically viable operation, both the content of PGMs must be reduced and their intrinsically strong H adsorption mitigated. Herein, we show that the surface effects of hydrogenated TiO nanotube (TNT) arrays can make osmium, a so far less-explored PGM, a highly active HER electrocatalyst.

View Article and Find Full Text PDF

Parental behaviors secure the well-being of newborns and concomitantly limit negative affective states in adults, which emerge when coping with neonatal distress becomes challenging. Whether negative-affect-related neuronal circuits orchestrate parental actions is unknown. Here, we identify parental signatures in lateral habenula neurons receiving bed nucleus of stria terminalis innervation (LHb).

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes are crucial for regulating iron levels in the brain and their ferritin mRNA translation may vary based on location within the cell.
  • A study used a new method to analyze how ferritin mRNAs are distributed in astrocytes in the hippocampus under different conditions like aging and Alzheimer’s disease.
  • The findings showed that iron regulation through ferritin mRNA density and location changes in various contexts, suggesting a role in maintaining iron balance in both healthy and disease states.
View Article and Find Full Text PDF

In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity.

View Article and Find Full Text PDF

A new design of a triple band perfect metamaterial absorber based on Pythagorean fractal geometry is proposed and analyzed for terahertz sensing applications. The proposed design showed an enhanced sensing performance and achieved three intensive peaks at 33.93, 36.

View Article and Find Full Text PDF

Wetting of surfaces plays a vital role in many biological and industrial processes. There are several phenomena closely related to wetting such as biofouling and corrosion that cause the deterioration of materials, while the efforts to prevent the degradation of surface functionality have spread over several millennia. Antifouling coatings have been developed to prevent/delay both corrosion and biofouling, but the problems remain unsolved, influencing the everyday life of the modern society in terms of safety and expenses.

View Article and Find Full Text PDF

With the introduction of a new interdisciplinary field, osteoimmunology, today, it is well acknowledged that biomaterial-induced inflammation is modulated by immune cells, primarily macrophages, and can be controlled by nanotopographical cues. Recent studies have investigated the effect of surface properties in modulating the immune reaction, and literature data indicate that various surface cues can dictate both the immune response and bone tissue repair. In this context, the purpose of the present study was to investigate the effects of titanium dioxide nanotube (TNT) interspacing on the response of the macrophage-like cell line RAW 264.

View Article and Find Full Text PDF

Self-organized anodic TiO nanostructures, in the form of nanopores, nanotubes, mesosponge, etc., obtained by electrochemical anodization have in the past two decades attracted tremendous focus and the number of publications based on such structures for various applications is remarkable. Guo et al.

View Article and Find Full Text PDF

TiO nanostructures and more specifically nanotubes have gained significant attention in biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to morphology and properties of TiO nanotubes obtained by electrochemical anodization of titanium for the biomedical field. Following the discussion of TiO nanotopographical characterization, the advantages of anodic TiO nanotubes will be introduced, such as their high surface area controlled by the morphological parameters (diameter and length), which provides better adsorption/linkage of bioactive molecules.

View Article and Find Full Text PDF

Here, we evaluate three different noble metal co-catalysts (Pd, Pt, and Au) that are present as single atoms (SAs) on the classic benchmark photocatalyst, TiO. To trap the single atoms on the surface, we introduced controlled surface vacancies (Ti-O) on anatase TiO nanosheets by a thermal reduction treatment. After anchoring identical loadings of single atoms of Pd, Pt, and Au, we measure the photocatalytic H generation rate and compare it to the classic nanoparticle co-catalysts on the nanosheets.

View Article and Find Full Text PDF

Together with the compartmentalization of mRNAs in distal regions of the cytoplasm, local translation constitutes a prominent and evolutionarily conserved mechanism mediating cellular polarization and the regulation of protein delivery in space and time. The translational regulation of gene expression enables a rapid response to stimuli or to a change in the environment, since the use of pre-existing mRNAs can bypass time-consuming nuclear control mechanisms. In the brain, the translation of distally localized mRNAs has been mainly studied in neurons, whose cytoplasmic protrusions may be more than 1000 times longer than the diameter of the cell body.

View Article and Find Full Text PDF

Translation of distally localized mRNAs is an evolutionary mechanism occurring in polarized cells. It has been observed in astrocytes, whose processes contact blood vessels and synapses. Here, we describe a protocol for the purification of the entire pool of ribosome-bound mRNAs in perisynaptic astrocytic processes (PAPs).

View Article and Find Full Text PDF

Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions.

View Article and Find Full Text PDF

Local translation is a conserved mechanism conferring cells the ability to quickly respond to local stimuli. In the brain, it has been recently reported in astrocytes, whose fine processes contact blood vessels and synapses. Yet the specificity and regulation of astrocyte local translation remain unknown.

View Article and Find Full Text PDF

Astrocytes are morphologically complex and use local translation to regulate distal functions. To study the distribution of mRNA in astrocytes, we combined mRNA detection via hybridization with immunostaining of the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). mRNAs at the level of GFAP-immunolabelled astrocyte somata, and large and fine processes were analysed using AstroDot, an ImageJ plug-in and the R package AstroStat.

View Article and Find Full Text PDF

Here we report that both-end open anodic TiO nanotube membranes, after sensitization with a Ru(ii)-based dye, exhibit visible-light switching properties for flow-through the nanotube channels. Under illumination, the gate is in an open state providing ∼four-times faster permeation of small molecules through the membrane compared to a dark state. Switching is reversible with no apparent dye degradation being observed.

View Article and Find Full Text PDF

Titanium dioxide (TiO) nanotube coated substrates have revolutionized the concept of implant in a number of ways, being endowed with superior osseointegration properties and local drug delivery capacity. While accumulating reports describe the influence of nanotube diameter on cell behavior, little is known about the effects of nanotube lateral spacing on cells involved in bone regeneration. In this context, in the present study the MC3T3-E1 murine pre-osteoblast cells behavior has been investigated by using TiO nanotubes of ~78 nm diameter and lateral spacing of 18 nm and 80 nm, respectively.

View Article and Find Full Text PDF