Publications by authors named "Kuo-Liang Chung"

Bayer color filter array (CFA) images are captured by a single-chip image sensor covered with a Bayer CFA pattern which has been widely used in modern digital cameras. In the past two decades, many compression methods have been proposed to compress Bayer CFA images. These compression methods can be roughly divided into the compression-first-based (CF-based) scheme and the demosaicing-first-based (DF-based) scheme.

View Article and Find Full Text PDF

As the color filter array (CFA)2.0, the RGBW CFA pattern, in which each CFA pixel contains only one R, G, B, or W color value, provides more luminance information than the Bayer CFA pattern. Demosaicking RGBW CFA images I R G B W is necessary in order to provide high-quality RGB full-color images as the target images for human perception.

View Article and Find Full Text PDF

In this paper, we propose an effective novel content-aware chroma reconstruction (CACR) method for screen content images (SCIs). After receiving the decoded downsampled YUV image on the client side, our fast chroma-copy approach reconstructs the missing chroma pixels in the flat regions of SCI. Then, for non-flat regions, a non-flat region-based winner-first voting (NRWV) strategy is proposed to identify the chroma subsampling scheme used on the server side prior to compression.

View Article and Find Full Text PDF

In asymmetric resolution stereoscopic video coding (ARSVC), a stereoscopic video consists of one full-sized leftview video sequence and the synchronized quarter-sized rightview video sequence for achieving a bitrate reduction effect by the encoder. Prior to displaying 3D scenes on the screen, it is necessary to upsample the decoded downsampled right-view video sequence at the client side. In this paper, we propose an effective adaptive upsampling method for ARSVC.

View Article and Find Full Text PDF

In this paper, we propose a novel adaptive chroma subsampling-binding and luma-guided (ASBLG) chroma reconstruction method for screen content images (SCIs). After receiving the decoded luma and subsampled chroma image from the decoder, a fast winner-first voting strategy is proposed to identify the used chroma subsampling scheme prior to compression. Then, the decoded luma image is subsampled as the identified subsampling scheme was performed on the chroma image such that we are able to conclude an accurate correlation between the subsampled decoded luma image and the decoded subsampled chroma image.

View Article and Find Full Text PDF

In this paper, we propose a novel and effective hybrid method, which joins the conventional chroma subsampling and the distortion-minimization-based luma modification together, to improve the quality of the reconstructed RGB full-color image. Assume the input RGB full-color image has been transformed to a YUV image, prior to compression. For each 2×2 UV block, one 4:2:0 subsampling is applied to determine the one subsampled U and V components, U and V .

View Article and Find Full Text PDF

Without demosaicing processing, this paper first proposes a new approach to extract more accurate gradient/edge information on mosaic images directly. Next, based on spectral-spatial correlation, a novel adaptive heterogeneity-projection with proper mask size for each pixel is presented. Combining the extracted gradient/edge information and the adaptive heterogeneity-projection values, a new edge-sensing demosaicing algorithm is presented.

View Article and Find Full Text PDF

According to the observation on the distribution of motion differentials among the motion vector of any block and those of its four neighboring blocks from six real video sequences, this paper presents a new predictive search area approach for fast block motion estimation. Employing our proposed simple predictive search area approach into the full search (FS) algorithm, our improved FS algorithm leads to 93.83% average execution-time improvement ratio, but only has a small estimation accuracy degradation.

View Article and Find Full Text PDF

Recently, several efficient context-based arithmetic coding algorithms have been developed successfully for lossless compression of error-diffused images. In this paper, we first present a novel block- and texture-based approach to train the multiple-template according to the most representative texture features. Based on the trained multiple template, we next present an efficient texture- and multiple-template-based (TM-based) algorithm for lossless compression of error-diffused images.

View Article and Find Full Text PDF

The inverse halftoning algorithm is used to reconstruct a gray image from an input halftone image. Based on the recently published lookup table (LUT) technique, this paper presents a novel edge-based LUT method for inverse halftoning which improves the quality of the reconstructed gray image. The proposed method first uses the LUT-based inverse halftoning method as a preprocessing step to transform the given halftone image to a base gray image, and then the edges are extracted and classified from the base gray image.

View Article and Find Full Text PDF