Publications by authors named "Kiichiro Tomoda"

Gefitinib is a key drug used in the treatment of non-small cell lung cancer (NSCLC) with mutations. Gefitinib therapy is superior to conventional chemotherapy for the progression-free survival rate of patients with mutations. However, 10-26% of patients develop grade 3 or higher hepatotoxicity during gefitinib treatment; therefore, the development of preclinical tests for hepatotoxicity prior to clinical use is desirable.

View Article and Find Full Text PDF

Biological patterning events that occur early in development establish proper tissue morphogenesis. Identifying the mechanisms that guide these patterning events is necessary in order to understand the molecular drivers of development and disease and to build tissues in vitro. In this study, we use an in vitro model of gastrulation to study the role of tight junctions and apical/basolateral polarity in modulating bone morphogenic protein-4 (BMP4) signaling and gastrulation-associated patterning in colonies of human pluripotent stem cells (hPSCs).

View Article and Find Full Text PDF

Non-thermal atmospheric-pressure plasma has been used for biological applications, including sterilization and stimulation of cell growth and differentiation. Here, we demonstrate that plasma exposure influences the differentiation pattern of human induced pluripotent stem cells (hiPSCs). We treated hiPSCs with dielectric barrier-discharge air plasma and found an exposure dose that does not kill hiPSCs.

View Article and Find Full Text PDF

Macrophages play crucial roles in many human disease processes. However, obtaining large numbers of primary cells for study is often difficult. We describe 2D and 3D methods for directing human induced pluripotent stem cells (hiPSCs) into macrophages (iMACs).

View Article and Find Full Text PDF

Recently, a new wave of synthetic embryo systems (SESs) has been established from cultured cells for efficient and ethical embryonic development research. We recently reported our epiblast stem cell (EPISC) reprogramming SES that generates numerous blastocyst (BC)-like hemispheres (BCLH) with pluripotent and extraembryonic cell features detected by microscopy. Here, we further explored the system over key time points with single-cell RNA-sequencing analysis.

View Article and Find Full Text PDF

Recently, the fields of embryology, developmental biology, stem cell biology, and cell reprogramming, have intersected with synthetic embryo systems (SESs) from cultured cells. Among such SESs, several approaches have engaged early-embryo-like cells, cells with atypical potency, or assembled traditional in vitro stem cell populations with synergy, to advance life discovery systems that may yield emergent knowledge and biotechnical advance. Such models center on the competent generation of blastocyst-like and post-implantation embryo-like forms.

View Article and Find Full Text PDF

Miscarriage is the most common complication of pregnancy, and about 1% of pregnant women suffer a recurrence. Using a widely used mouse miscarriage model, we previously showed that intravenous injection of bone marrow (BM)-derived endothelial progenitor cells (EPCs) may prevent miscarriage. However, preparing enough BM-derived EPCs to treat a patient might be problematic.

View Article and Find Full Text PDF

Stromal interaction molecule 1 (STIM1) plays a pivotal role in store-operated Ca entry (SOCE), an essential mechanism in cellular calcium signaling and in maintaining cellular calcium balance. Because -GlcNAcylation plays pivotal roles in various cellular function, we examined the effect of fluctuation in STIM1 -GlcNAcylation on SOCE activity. We found that both increase and decrease in STIM1 -GlcNAcylation impaired SOCE activity.

View Article and Find Full Text PDF

Understanding the specific properties of human induced pluripotent stem cells (iPSCs) is important for quality control of iPSCs. Having incidentally discovered that overexpression of plasma membrane Na/H exchanger 1 (NHE1) induces cell death in iPSCs, we investigated the mechanism of NHE1-induced cell death. Doxycycline-induced NHE1 overexpression arrested cell growth, and nearly all cells were killed by a necrotic process within 72 h.

View Article and Find Full Text PDF

Soon after fertilization, the few totipotent cells of mammalian embryos diverge to form a structure called the blastocyst (BC). Although numerous cell types, including germ cells and extended-pluripotency stem cells, have been developed from pluripotent stem cells (PSCs) in vitro, generating functional BCs only from PSCs remains elusive. Here, we describe induced self-organizing 3D BC-like cysts (iBLCs) generated from mouse PSC culture.

View Article and Find Full Text PDF

Developmental signaling molecules are used for cell fate determination, and understanding how their combinatorial effects produce the variety of cell types in multicellular organisms is a key problem in biology. Here, we demonstrate that the combination of leukemia inhibitory factor (LIF), bone morphogenetic protein 4 (BMP4), lysophosphatidic acid (LPA), and ascorbic acid (AA) efficiently converts mouse primed pluripotent stem cells (PSCs) into naive PSCs. Signaling by the lipid LPA through its receptor LPAR1 and downstream effector Rho-associated protein kinase (ROCK) cooperated with LIF signaling to promote this conversion.

View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) patients carry a missense mutation in ACVR1 [617G > A (R206H)] that leads to hyperactivation of BMP-SMAD signaling. Contrary to a previous study, here we show that FOP fibroblasts showed an increased efficiency of induced pluripotent stem cell (iPSC) generation. This positive effect was attenuated by inhibitors of BMP-SMAD signaling (Dorsomorphin or LDN1931890) or transducing inhibitory SMADs (SMAD6 or SMAD7).

View Article and Find Full Text PDF

The advent of induced pluripotent stem (iPS) cell technology has revolutionized biomedicine and basic research by yielding cells with embryonic stem (ES) cell-like properties. The use of iPS-derived cells for cell-based therapies and modeling of human disease holds great potential. While the initial description of iPS cells involved overexpression of four transcription factors via viral vectors that integrated within genomic DNA, advances in recent years by our group and others have led to safer and higher quality iPS cells with greater efficiency.

View Article and Find Full Text PDF

NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important.

View Article and Find Full Text PDF

Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP). Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca(2+)]i) measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM).

View Article and Find Full Text PDF

Female human induced pluripotent stem cell (hiPSC) lines exhibit variability in X-inactivation status. The majority of hiPSC lines maintain one transcriptionally active X (Xa) and one inactive X (Xi) chromosome from donor cells. However, at low frequency, hiPSC lines with two Xas are produced, suggesting that epigenetic alterations of the Xi occur sporadically during reprogramming.

View Article and Find Full Text PDF

Background: Reprogramming adult human somatic cells to create human induced pluripotent stem (hiPS) cell colonies involves a dramatic morphological and organizational transition. These colonies are morphologically indistinguishable from those of pluripotent human embryonic stem (hES) cells. G protein-coupled receptors (GPCRs) are required in diverse developmental processes, but their role in pluripotent colony morphology and organization is unknown.

View Article and Find Full Text PDF

Successful reprogramming of differentiated human somatic cells into a pluripotent state would allow creation of patient- and disease-specific stem cells. We previously reported generation of induced pluripotent stem (iPS) cells, capable of germline transmission, from mouse somatic cells by transduction of four defined transcription factors. Here, we demonstrate the generation of iPS cells from adult human dermal fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc.

View Article and Find Full Text PDF

Jab1, also known as the fifth component of the COP9 signalosome complex (CSN5), directly interacts with and regulates the activity and stability of multiple intracellular regulatory molecules, such as c-Jun, p27, p53, Cullin, Smad4, and HIF1alpha. In addition, a high level of Jab1 is observed in a variety of human cancers and is sometimes correlated with a poor prognosis, suggesting that Jab1 contributes to cancer cell proliferation and survival and could be a novel target of cancer therapy. In this report, we generated five mouse monoclonal antibodies to a bacterially produced recombinant mouse Jab1 protein and examined their capabilities and limitations in commonly used assays, including enzyme linked immunosorbent assay (ELISA), Western blotting with denatured and native polyacrylamide gel electrophoresis (PAGE), immunoprecipitation, and immunofluorescence microscopy, finding the most suitable antibody for each application.

View Article and Find Full Text PDF

Jab1 overexpression is observed in many human cancers, but its physiological significance remains to be investigated. We reduced the level of Jab1 expression in pancreatic cancer cell lines, MIA PaCa-2 and PANC-1 by the RNA interference and found that Jab1-knockdown resulted in impaired cell proliferation and enhanced apoptosis regardless of the genotype of the tumor suppressor p53. This growth inhibition was rescued by the introduction of siRNA-resistant mouse Jab1 cDNA.

View Article and Find Full Text PDF

Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth.

View Article and Find Full Text PDF

Jab1 interacts with a variety of cell cycle and signal transduction regulators to control cell proliferation, differentiation, and tumorigenesis. In this study, we employed a non-denaturing gel electrophoresis method to separate different Jab1-containing complexes, the COP9 signalosome complex and the small Jab1-containing subcomplex. The formation of the small Jab1 complex was dependent on a low cell density and anchorage to a solid support, and enhanced during the early G1 phase of the cell cycle, which was abrogated in ras-transformed cells.

View Article and Find Full Text PDF

Jab1 is a multifunctional protein associated with the signaling pathway, cell-cycle regulation, and development, and acts as a key subunit of COP9 signalosome (CSN). Jab1 promotes degradation of the cyclin-dependent kinase inhibitor p27(Kip1) by transportation from the nucleus to the cytoplasm. However, there has been no clear evidence for whether and how Jab1 contributes to malignant transformation in human cancers.

View Article and Find Full Text PDF