Microbial assemblages under the sea ice of the Dease Strait, Canadian Arctic, were sequenced for metagenomes of a small size fraction (0.2-3 μm). The community from early March was typical for this season, with - and Gammaproteobacteria as the dominant taxa, followed by Thaumarchaeota and Bacteroidetes.
View Article and Find Full Text PDFThe diatom lipidome actively regulates photosynthesis and displays a high degree of plasticity in response to a light environment, either directly as structural modifications of thylakoid membranes and protein-pigment complexes, or indirectly via photoprotection mechanisms that dissipate excess light energy. This acclimation is crucial to maintaining primary production in marine systems, particularly in polar environments, due to the large temporal variations in both the intensity and wavelength distributions of downwelling solar irradiance. This study investigated the hypothesis that Arctic marine diatoms uniquely modify their lipidome, including their concentration and type of pigments, in response to wavelength-specific light quality in their environment.
View Article and Find Full Text PDFSea ice habitats harbour seasonally abundant microalgal communities, which can be highly productive in the spring when the availability of light increases. An active, bloom-associated prokaryotic community relies on these microalgae for their organic carbon requirements, however an analysis of the encoded metabolic pathways within them is lacking. Hence, our understanding of biogeochemical cycling within sea ice remains incomplete.
View Article and Find Full Text PDFArctic marine environments are experiencing rapid changes due to the polar amplification of global warming. These changes impact the habitat of the cold-adapted microbial communities, which underpin biogeochemical cycles and marine food webs. We comparatively investigated the differences in prokaryotic and microeukaryotic taxa between summer surface water microbiomes sampled along a latitudinal transect from the ice-free southern Barents Sea and into the sea-ice-covered Nansen Basin to disentangle the dominating community (ecological) selection processes driving phylogenetic diversity.
View Article and Find Full Text PDFSea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g.
View Article and Find Full Text PDFA new species of monstrilloid copepod, , is described from an adult female that was collected beneath snow-covered sea ice during the 2014 Ice Covered Ecosystem - CAMbridge bay Process Study (ICE-CAMPS) in Dease Strait of the Canadian Arctic Archipelago. Currently, up to six species of this order are known to occur in polar latitudes. The new species described herein shares similarities with (Scott, 1904) but differs in its body proportions and cephalothorax ornamentation; the cephalothorax is covered by minute scattered papillae on dorsal and ventral surfaces; this species has a reduced fifth leg endopod, fifth leg exopod armed with three setae, antennule with fused segments 3-4, and the genital double-somite bears unique posterolateral processes.
View Article and Find Full Text PDF