Publications by authors named "Kai Dang"

The role of glycogen and lipid metabolism in the testes of Daurian ground squirrels (Spermophilus dauricus) during different stages of the hibernation cycle and their influence on reproductive function remain poorly understood. This study examined testicular morphology across hibernation stages and investigated potential molecular mechanisms. Results showed that: (1) Spermatocyte density was reduced in the torpor group compared to the pre-hibernation (PRE) group, suggesting a suppression of spermatogenesis during torpor.

View Article and Find Full Text PDF

Aims: Glucosamine, a widely used dietary supplement, has been linked to potential cardiovascular risks, including atrial fibrillation (AF). This study aimed to investigate the effects of long-term glucosamine supplementation on AF susceptibility and the underlying mechanisms.

Materials And Methods: C57BL/6 J mice were treated with low-dose (15 mg/kg/day) or high-dose (250 mg/kg/day) glucosamine via drinking water for 6 weeks.

View Article and Find Full Text PDF

Cyclic hibernation bouts in Daurian ground squirrels (Spermophilus dauricus) lead to repeated suppression and recovery of mitochondrial respiratory function across multiple organs, potentially impacting reactive oxygen species (ROS) dynamics. The Harderian gland (HG) plays an important role in endocrine regulation through porphyrin secretion. However, the influence of hibernation on oxidative pressure and associated antioxidant pathways in the HG remains inadequately understood.

View Article and Find Full Text PDF

Long-term inactivity of skeletal muscle results in muscular disuse atrophy; however, hibernating animals do not experience muscular disuse atrophy during the hibernation period. The molecular mechanism underlining the anti-atrophy effect in these animals is unclear. O-linked N acetyl-β-D-glucosaminylation (O-GlcNAcylation) and its effect on cell signaling pathways are important mechanisms underlying muscular disuse atrophy; thus, in this study, we investigated O-GlcNAcylation changes during hibernation in Spermophilus dauricus to explore the role of O-GlcNAcylation in the muscle disuse atrophy resistance of hibernating animals.

View Article and Find Full Text PDF

Muscle and bone are cooperatively preserved in Daurian ground squirrels (Spermophilus dauricus) during hibernation. As such, we hypothesized that IGF-1 and myostatin may contribute to musculoskeletal maintenance during this period. Thus, we systematically assessed changes in the protein expression levels of IGF-1 and myostatin, as well as their corresponding downstream targets, in the vastus medialis (VM) muscle and femur in Daurian ground squirrels during different stages.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs), which regulate gene expression through post-transcriptional modifications of RNAs, play a role in diverse biological processes that include bone cell development and bone tissue formation. RBP dysregulation may result in aberrant bone homeostasis and contribute to various bone diseases. The function of RBPs in bone physiology and pathophysiology and the underlying molecular mechanisms have been extensively studied in recent years.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the testicular function of Daurian ground squirrels during their winter hibernation, focusing on autophagy, apoptosis, and mitochondrial homeostasis.
  • Results show that while hibernating, there were increases in testicular size and hormone levels, indicating stable testicular function despite winter stress.
  • Additionally, there was evidence of enhanced mitochondrial health and dynamic activity, along with signs of DNA damage suggesting active apoptotic and autophagic processes during hibernation.
View Article and Find Full Text PDF

Hibernating Spermophilus dauricus experiences minor muscle atrophy, which is an attractive anti-disuse muscle atrophy model. Integrated metabolomics and proteomics analysis was performed on the hibernating S. dauricus during the pre-hibernation (PRE) stage, torpor (TOR) stage, interbout arousal (IBA) stage, and post-hibernation (POST) stage.

View Article and Find Full Text PDF
Article Synopsis
  • Mammalian hibernation consists of torpor bouts followed by interbout arousals, impacting muscle activity and preventing atrophy.
  • During torpor, muscle performance declines, but improvements are seen during interbout arousal and post-hibernation.
  • The study found that muscle contractile properties and mitochondrial activity decreased during torpor, but both recovered during the interbout arousal and post-hibernation phases.
View Article and Find Full Text PDF

Gout and hyperuricemia are common metabolic diseases. Patients with purine metabolism disorder and/or decreased uric acid excretion showed increased uric acid levels in the blood. The increase of uric acid in the blood leads to the deposition of urate crystals in tissues, joints, and kidneys, and causes gout.

View Article and Find Full Text PDF
Article Synopsis
  • Oticon Medical cochlear implants utilize a stimulation mode called Distributed All-Polar (DAP) that connects multiple intracochlear electrodes and an extracochlear reference electrode, resulting in a unique current distribution that hasn't been fully described before.
  • A study was conducted using a modified Neuro Zti implanted in a human head to measure the current returning to each electrode during DAP stimulation, revealing that about 20% of the current returns to the extracochlear electrode while 80% is distributed among the intracochlear electrodes.
  • The results indicated that the position of the stimulating electrode and changes in charge level affect the current distribution, suggesting that more research is necessary to determine if DAP is more effective for speech understanding compared to other stimulation
View Article and Find Full Text PDF

Hibernating Spermophilus dauricus is resistant to muscle atrophy. Comprehensive transcriptome and proteome time-course analyses based on Metascape can further reveal the underlying processes (pre-hibernation stage, PRE; torpor stage, TOR; interbout arousal stage, IBA; and post-hibernation stage, POST). Transcriptome analysis showed that the cellular responses to growth factor stimulus and discrete oxygen levels continuously changed during hibernation.

View Article and Find Full Text PDF

Background: Previous studies have shown that microtubule actin crosslinking factor 1 (MACF1) can regulate osteoblast proliferation and differentiation through non-coding RNA (ncRNA) in bone-forming osteoblasts. However, the role of MACF1 in targeting the competing endogenous RNA (ceRNA) network to regulate osteoblast differentiation remains poorly understood. Here, we profiled messenger RNA (mRNA), microRNA (miRNA), and long ncRNA (lncRNA) expression in MACF1 knockdown MC3TC‑E1 pre‑osteoblast cells.

View Article and Find Full Text PDF

1,2,4-triazole derivatives exhibit various biological activities, including antibacterial and antifungal properties. On the other hand, these chemicals may have unique cumulative and harmful effects on living organisms. The goal of this work is to use quantitative structure-toxicity relationship (QSTR) and interspecies quantitative toxicity-toxicity relationship (iQSTTR) models to predict the acute toxicity of 1,2,4-triazole derivatives.

View Article and Find Full Text PDF

The residual performance of two pyrethroid-neonicotinoid mixture formulations: Temprid SC (10.5% beta-cyfluthrin and 21% imidacloprid) and Tandem (3.5% lambda-cyhalothrin and 11.

View Article and Find Full Text PDF

Introduction: As a post-translational modification, glycosylation plays vital role in regulating the folding and function of proteins necessary for many biological processes. Unlike glycation, glycosylation is an enzymatic process; glycosyltransferases transfer sugars to proteins, forming glycosidic bonds with amino acid residues on proteins. Changes that interfere with the enzymatic reaction and result in abnormal glycosylation can spatio-temporally affect the balance of glycosylation, leading to disease states.

View Article and Find Full Text PDF

Objective: Osteoporosis has become the biggest cause of non-fatal health issue. Currently, the limitations of traditional anti-osteoporosis drugs such as long-term ill-effects and drug resistance, have raised concerns toward complementary and alternative therapies, particularly herbal medicines and their natural active compounds. Thus, this study aimed to provide an integrative analysis of active chemicals, drug targets and interacting pathways of the herbs for osteoporosis treatment.

View Article and Find Full Text PDF

We previously showed that different skeletal muscles in Daurian ground squirrels () possess different antioxidant strategies during hibernation; however, the reason for these varied strategies remains unclear. To clarify this issue, we studied REDD1, FOXO4, PGC-1α, FOXO1 and atrogin-1 proteins to determine the potential cause of the different antioxidant strategies in Daurian ground squirrels during hibernation, and to clarify whether different strategies affect atrophy-related signals. Results showed that the soleus (SOL) muscle experienced intracellular hypoxia during interbout arousal, but no oxidative stress.

View Article and Find Full Text PDF

Bone is a mechanosensitive organ that provides strength and support. Many bone cells, various pathways, and signaling molecules coordinate bone metabolism and also determine the course of bone diseases, such as osteoporosis, osteonecrosis, osteopenia, etc. Osteoporosis is caused by increased bone resorption and reduced bone formation due to the changes in the level of different proteins and RNAs in osteoclast or/and osteoblasts.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are single-stranded RNA molecules that control gene expression in various processes, such as cancers, Alzheimer's disease, and bone metabolic diseases. However, the regulatory roles of miRNAs in osteoporosis have not been systematically analyzed. Here, we performed a comprehensive analysis to identify the differentially expressed miRNAs involved in osteoporosis.

View Article and Find Full Text PDF

Hexanitrohexaazaisowurtzitane (CL-20) is a compound with a polycyclic cage and an N-nitro group that has been shown to play an unfavorable role in environmental fate, biosafety, and physical health. The aim of this study was to isolate the microbial community and to identify a single microbial strain that can degrade CL-20 with desirable efficiency. Metagenomic sequencing methods were performed to investigate the dynamic changes in the composition of the community diversity.

View Article and Find Full Text PDF

Many tasks involve learning representations from matrices, and Non-negative Matrix Factorization (NMF) has been widely used due to its excellent interpretability. Through factorization, sample vectors are reconstructed as additive combinations of latent factors, which are represented as non-negative distributions over the raw input features. NMF models are significantly affected by latent factors' distribution characteristics and the correlations among them.

View Article and Find Full Text PDF