Publications by authors named "Junni Zou"

Federated learning (FL) commonly encourages the clients to perform multiple local updates before the global aggregation, thus avoiding frequent model exchanges and relieving the communication bottleneck between the server and clients. Though empirically effective, the negative impact of multiple local updates on the stability of FL is not thoroughly studied, which may result in a globally unstable and slow convergence. Based on sensitivity analysis, we define in this paper a local-update stability index for the general FL, as measured by the maximum inter-client model discrepancy after the multiple local updates that mainly stems from the data heterogeneity.

View Article and Find Full Text PDF

By introducing randomness on the environments, domain randomization (DR) imposes diversity to the policy training of deep reinforcement learning, and thus improves its capability of generalization. The randomization of environments, however, introduces another source of variability for the estimate of policy gradients, in addition to the already high variance incurred by trajectory sampling. Therefore, with standard state-dependent baselines, the policy gradient methods may still suffer high variance, causing a low sample efficiency during the training of DR.

View Article and Find Full Text PDF

3-D point clouds facilitate 3-D visual applications with detailed information of objects and scenes but bring about enormous challenges to design efficient compression technologies. The irregular signal statistics and high-order geometric structures of 3-D point clouds cannot be fully exploited by existing sparse representation and deep learning based point cloud attribute compression schemes and graph dictionary learning paradigms. In this paper, we propose a novel p-Laplacian embedding graph dictionary learning framework that jointly exploits the varying signal statistics and high-order geometric structures for 3-D point cloud attribute compression.

View Article and Find Full Text PDF

Message passing has evolved as an effective tool for designing graph neural networks (GNNs). However, most existing methods for message passing simply sum or average all the neighboring features to update node representations. They are restricted by two problems: 1) lack of interpretability to identify node features significant to the prediction of GNNs and 2) feature overmixing that leads to the oversmoothing issue in capturing long-range dependencies and inability to handle graphs under heterophily or low homophily.

View Article and Find Full Text PDF

It is promising to solve linear inverse problems by unfolding iterative algorithms (e.g., iterative shrinkage thresholding algorithm (ISTA)) as deep neural networks (DNNs) with learnable parameters.

View Article and Find Full Text PDF

Model quantization is essential to deploy deep convolutional neural networks (DCNNs) on resource-constrained devices. In this article, we propose a general bitwidth assignment algorithm based on theoretical analysis for efficient layerwise weight and activation quantization of DCNNs. The proposed algorithm develops a prediction model to explicitly estimate the loss of classification accuracy led by weight quantization with a geometrical approach.

View Article and Find Full Text PDF

One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously, with the former suffering much from extreme foreground-background class imbalance issue due to the large number of anchors. This paper alleviates this issue by proposing a novel framework to replace the classification task in one-stage detectors with a ranking task, and adopting the average-precision loss (AP-loss) for the ranking problem. Due to its non-differentiability and non-convexity, the AP-loss cannot be optimized directly.

View Article and Find Full Text PDF

The task of reidentifying groups of people under different camera views is an important yet less-studied problem. Group reidentification (Re-ID) is a very challenging task since it is not only adversely affected by common issues in traditional single-object Re-ID problems, such as viewpoint and human pose variations, but also suffers from changes in group layout and group membership. In this paper, we propose a novel concept of group granularity by characterizing a group image by multigrained objects: individual people and subgroups of two and three people within a group.

View Article and Find Full Text PDF

The cognitive radio technique allows secondary users (SUs) to share the spectrum with primary users (PUs) in an exclusive or opportunistic manner. This paper studies spectrum pricing conducted by spectrum owners, that is, primary operators (POs), and SU decision-making strategies for three kinds of duopoly markets. The single-band exclusive use market considers two POs with each providing a single band dedicated to SUs.

View Article and Find Full Text PDF

Dictionary learning has emerged as a promising alternative to the conventional hybrid coding framework. However, the rigid structure of sequential training and prediction degrades its performance in scalable video coding. This paper proposes a progressive dictionary learning framework with hierarchical predictive structure for scalable video coding, especially in low bitrate region.

View Article and Find Full Text PDF

In the past few decades, we have witnessed the success of bag-of-features (BoF) models in scene classification, object detection, and image segmentation. Whereas it is also well acknowledged that the limitation of BoF-based methods lies in the low-level feature encoding and coarse feature pooling. This paper proposes a novel scene classification method, which leverages several semantic codebooks learned in a multitask fashion for robust feature encoding, and designs a context-aware image representation for efficient feature pooling.

View Article and Find Full Text PDF

Classical dictionary learning methods for video coding suffer from high computational complexity and interfered coding efficiency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3D low-frequency and high-frequency spatio-temporal volumes.

View Article and Find Full Text PDF