Publications by authors named "Jing Yang"

Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.

View Article and Find Full Text PDF

Vibrio parahaemolyticus propels itself through liquids using a polar flagellum and efficiently swarms across surfaces or viscous environments with the aid of lateral flagella. H-NS plays a negative role in the swarming motility of V. parahaemolyticus by directly repressing the transcription of the lateral flagellin gene lafA.

View Article and Find Full Text PDF

This study introduces the first metal organic framework using ammelide as the organic ligand, showcasing stability in boiling water and high sensitivity in detecting dichromate ions.

View Article and Find Full Text PDF

The cyclic structure of non-ribosomal peptides (NRPs) is critical for enhancing their stability and bioactivity, which highlights the importance of exploring NRP cyclization enzymes for natural product discovery. Thioesterases (TEs) are crucial enzymes that catalyze the formation of various lactams, including macrolactams, β-lactams, and γ-lactams; however, their potential to produce other lactam types remains largely unexplored. In this study, we identified spinactin A () and novel derivatives, spinactin B-E (-), from NRRL 18395 and characterized the biosynthetic enzymes involved, particularly a unique TE SncF, responsible for δ-lactam formation.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) presents significant treatment challenges due to the severe toxicities and limited efficacy of conventional therapies, highlighting the urgency for innovative approaches. Organelle-targeting therapies offer a promising avenue to enhance therapeutic outcomes while minimizing adverse effects. Herein, inspired that primary AML cells are enriched with lysosomes and sensitive to lysosomophilic drugs (e.

View Article and Find Full Text PDF

Human brucellosis remains a significant public health issue in the Ili Kazak Autonomous Prefecture, Xinjiang, China. To assist local Centers for Disease Control and Prevention (CDC) in promptly formulate effective prevention and control measures, this study leveraged time-series data on brucellosis cases from February 2010 to September 2023 in Ili Kazak Autonomous Prefecture. Three distinct predictive modeling techniques-Seasonal Autoregressive Integrated Moving Average (SARIMA), eXtreme Gradient Boosting (XGBoost), and Long Short-Term Memory (LSTM) networks-were employed for long-term forecasting.

View Article and Find Full Text PDF

Dengue virus (DENV) infection, caused by serotypes DENV 1-4, represents a significant global public health challenge, with no antiviral drugs currently available for treatment. The host Protein kinase B (AKT) signaling pathway is crucial for DENV infection, presenting a potential target for antiviral drug development. This study aimed to evaluate the antiviral activity of kinase inhibitors that target the AKT pathway, focusing on the compound AT13148.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) is a broad-spectrum biomarker, and its accurate detection and analysis is important for early clinical diagnosis and treatment. This study aimed to develop a highly sensitive and selective sandwich-type immunosensor based on electrochemical impedance spectroscopy (EIS) for the accurate detection of CEA. A novel composite material, gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride (AuNPs/rGO/g-CN), was synthesized with excellent electrical conductivity and a large specific surface area to immobilize biological probes.

View Article and Find Full Text PDF

Rapid temperature contrast hydrotherapy by water immersion has been utilized by athletes for effective sports recovery. However, its application at some training or competition venues is limited by high water consumption, bucky size, personal hygiene, and inconvenience. Here, a novel portable system equipped with highly effective, lightweight, and hygienic wearable fluidic fabric device is reported, that replaces direct water immersion.

View Article and Find Full Text PDF

Objective: To establish and validate a model based on hyperdense middle cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) after endovascular treatment (EVT).

Methods: Patients with AIS who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent EVT at three comprehensive hospitals between June 2020 and January 2024 were recruited for this retrospective study. A radiomics model was constructed using the HMCAS radiomics features most strongly associated with HT.

View Article and Find Full Text PDF

The pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remains unclear due to the complexity of its etiology. The emerging field of the epitranscriptome has shown significant promise in advancing the understanding of disease pathogenesis and developing new therapeutic approaches. Recent research has demonstrated that N4-acetylcytosine (ac4C), an RNA modification within the epitranscriptome, is implicated in progression of various diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Antibiotics are widely used in livestock, leading to environmental contamination of rivers and groundwater, yet there's insufficient data on their sources and distribution.
  • A new model, MARINA-Antibiotics (China-1.0), estimates antibiotic flows from livestock into China's rivers and groundwater, revealing that antibiotic inputs reduced in rivers but increased in groundwater from 2010 to 2020.
  • Key findings show fluoroquinolones are the main contributors to river pollution, while sulfonamides dominate groundwater pollution, indicating a need for improved strategies to address groundwater contamination due to livestock practices.
View Article and Find Full Text PDF

The main bottleneck in the catalytic combustion of chlorinated volatile organic compounds (CVOCs) is deactivation and the production of chlorine-containing byproducts originating from the chlorine species deposited on the catalyst. Herein, Ru supported on SnO (Ru/SnO) was prepared with the lattice matching principle. As RuO and SnO are both rutile phases, Ru species were present as highly dispersed RuO particles on the Ru/SnO catalyst.

View Article and Find Full Text PDF

Background: The benefits of intravenous thrombolysis in patients with acute minor stroke remain controversial. For the aim of providing a better therapeutic strategy, high-quality trials are required to validate the efficacy of thrombolytic medicine other than intravenous recombinant tissue plasminogen and tenecteplase. In the trial, we evaluate the efficacy and safety of urokinase (UK) in acute minor stroke.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF

This review addresses the significant advancements in the identification of blood-based prognostic biomarkers for tuberculosis (TB), highlighting the importance of early detection to prevent disease progression. The manuscript discusses various biomarker categories, including transcriptomic, proteomic, metabolomic, immune cell-based, cytokine-based, and antibody response-based markers, emphasizing their potential in predicting TB incidence. Despite promising results, practical application is hindered by high costs, technical complexities, and the need for extensive validation across diverse populations.

View Article and Find Full Text PDF

Glioma is characterized by high heterogeneity and poor prognosis. Attempts have been made to understand its diversity in both genetic expressions and radiomic characteristics, while few integrated the two omics in predicting survival of glioma. This study was intended to investigate the connection between glioma imaging and genome, and examine its predictive value in glioma mortality risk and tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Betulinic acid (BA) is a natural compound obtained from plant extracts and is known for its diverse pharmacological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and anti-atherosclerotic properties. Its potential in anti-tumor therapy has garnered considerable attention, particularly for the treatment of breast, lung, and liver cancers. However, the clinical utility of BA is greatly hindered by its poor water solubility, low bioavailability, and off-target toxicity.

View Article and Find Full Text PDF

Cervical cancer (CC) is a prevalent gynecological malignancy. Increasing evidence suggests that circular RNAs (circRNAs) play a pivotal role in the pathogenesis of CC. However, the regulatory function of circ_ASH1L in CC remains elusive.

View Article and Find Full Text PDF

Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes.

View Article and Find Full Text PDF

Previous cesarean scar defect (PCSD), also acknowledged as the myometrium of uterus defects, which commonly results in myometrial discontinuity between the uterine and cervical cavity. Current literatures have indicated the efficacy of MSCs and MSC-derived exosomes (MSC-Exos) for diverse refractory disease administration, yet the feasibility of MSC-Exos for PCSD treatment is largely obscure. In this study, we took advantage of the in vivo myofibrotic model for mimicking the typical manifestation of PCSD and the assessment of fertility.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the role of a newly discovered protein family called MARTRE in regulating the poly(A) tail length of maternal mRNA during early embryo development in mice.
  • MARTRE proteins inhibit the deadenylase CCR4-NOT, helping to maintain longer poly(A) tails and enhance mRNA translation efficiency.
  • Deleting the Martre genes leads to shortened poly(A) tails, reduced mRNA translation, and delays in early embryonic development, emphasizing the importance of MARTRE in the translation of maternal mRNA.
View Article and Find Full Text PDF

Objective: This study aimed to explore the association between the triglyceride-Glucose Index (TyG) and its combination with obesity indicators in relation to the risk of hypertension among middle-aged and elderly individuals in China.

Methods: A total of 9,248 participants aged 45 and above were selected from the 2015 China Health and Retirement Longitudinal Study. Data on basic demographics, behavioral habits, medical history, physical examination results, and blood indicators were collected.

View Article and Find Full Text PDF

Understanding the behavior of high-entropy carbides (HECs) under oxygen-containing environments is of particular importance for their promising applications in structural components, catalysis, and energy-related fields. Herein, the structural evolution of (Ta, Ti, Cr, Nb)C (HEC-1) nanoparticles (NPs) is tracked in situ during the oxidation at the atomic scale by using an open-cell environmental aberration-corrected scanning transmission electron microscope. Three key stages are clearly discerned during the oxidation of HEC-1 NPs at the atomic level below 900 °C: i) increased amorphization of HEC-1 NPs from 300 to 500 °C due to the energetically favorable formation of carbon vacancies and substitution of carbon with oxygen atoms; ii) nucleation and subsequent growth of locally ordered nanocluster intermediates within the generated amorphous oxides from 500 to 800 °C; and iii) final one-step crystallization of non-equimolar MeO and MeO (Me = metallic elements, Ta, Ti, Cr, and Nb) high-entropy oxides above 800 °C, accompanied with the reduction in atomic defects.

View Article and Find Full Text PDF