Microbially-mediated arsenic biotransformation plays a pivotal role in the biogeochemical cycling of arsenic; however, the presence of arsenic biotransformation genes (ABGs) in urban dust remains unclear. To investigate the occurrence and spatiotemporal distributions of ABGs, a total of one hundred and eighteen urban dust samples were collected from different districts of Xiamen city, China in summer and winter. Although inorganic arsenic species, including arsenate [As(V)] and arsenite [As(III)], were found to be predominant, the methylated arsenicals, particularly trimethylarsine oxide [TMAs(V)O] and dimethylarsenate [DMAs(V)], were detected in urban dust.
View Article and Find Full Text PDFPurpose/aim: Bone defects caused by trauma, tumors, congenital malformation, or inflammation are very common in orthopedics. In recent years, mimicking the composition and structure of natural bone tissue has become a hot topic in biomaterial research, with the aim of developing an ideal biomaterial for bone defect transplantation. Here, the feasibility of a biphasic calcium phosphate (BCP)/acylated methacrylate gelatin (GelMA) composite hydrogel to repair bone defects was evaluated in vitro and in rats.
View Article and Find Full Text PDFObjective: The objective is to identify the risk factors for necrotizing enterocolitis (NEC) in neonates by a meta-analysis, and to provide a reference for the prevention of NEC.
Methods: The databases, including Chinese Biomedical Literature Datebase, China National Knowledge Infrastructure, Wanfang database, and Weipu Periodical database, PubMed, Web of Science, Embase, Cochrane Library, were searched for studies on the risk factors for NEC in neonates. The meta-analysis was carried out with the aid of Stata software.
Community and composition of dust-borne microbes would affect human health and are regulated by microbial community assembly. The dust in kindergarten is always collected to evaluate the microbial exposure of children, yet the microbial assembly, their interactions, and potential pathogens in kindergarten dust remain unclear. Here, we aim to investigate the microbial community assembly and structures, and potential bacterial pathogens in outdoor dust of kindergartens, and reveal the factors influencing the assembly and composition of microbial community.
View Article and Find Full Text PDFMicroplastics can act as carriers of heavy metals and may enter humans through ingestion and threaten human health. However, the bioaccessibility of heavy metals associated with microplastics and its implications for human health risk assessments are poorly understood. Therefore, in this study, four typical heavy metals (As(V), Cr(VI), Cd(II), and Pb(II)) and one typical microplastic (polyvinyl chloride, PVC) were chosen to estimate the human health risk of microplastic-associated heavy metals by incorporating bioaccessibility.
View Article and Find Full Text PDFObjective: To observe expression of CD38, a key modulator of nicotinamide dinucleotide (NAD+) metabolism in mice with knee osteoarthritis, and protective effect of CD38 inhibition during the osteoarthritis (OA) development.
Method: The destabilization of the medial meniscus (DMM) model was performed in mice to mimic the process of OA. Immunofluorescence of CD38 was performed to evaluate its response during the OA process.
Heavy metals in urban dust could pose noticeable human health risks, but there are few studies focusing on comprehensive human health risk assessment with the incorporation of both bioaccessibility and source apportionment in urban dust. Thus, fifty-eight urban dust samples were collected from kindergartens in Xiamen to analyze the bioaccessibility-based, source-specific health risk of heavy metals (V, Co, Ni, As, Mo, Cr, Mn, Cu, Zn, and Pb). Most heavy metals, except for V and Mn, were significantly enriched in urban dust based on their values of geoaccumulation index (I) and may be influenced by human activities.
View Article and Find Full Text PDFOsteoporosis is one of the common clinical orthopedic diseases, which can lead to a variety of complications. There are many pathogenic factors in this disease. The latest research found that ATP6V1H is a new gene leading to the occurrence of osteoporosis, and it is likely to become a new target for the future drug treatment of osteoporosis.
View Article and Find Full Text PDFNeural Regen Res
January 2021
J Cell Mol Med
September 2020
Traumatic nerve injuries have become a common clinical problem, and axon regeneration is a critical process in the successful functional recovery of the injured nervous system. In this study, we found that peripheral axotomy reduces PTEN expression in adult sensory neurons; however, it did not alter the expression level of PTEN in IB4-positive sensory neurons. Additionally, our results indicate that the artificial inhibition of PTEN markedly promotes adult sensory axon regeneration, including IB4-positive neuronal axon growth.
View Article and Find Full Text PDFIn addition to altered gene expression, pathological cytoskeletal dynamics in the axon are another key intrinsic barrier for axon regeneration in the central nervous system (CNS). Here, we show that knocking out myosin IIA and IIB (myosin IIA/B) in retinal ganglion cells alone, either before or after optic nerve crush, induces significant optic nerve regeneration. Combined Lin28a overexpression and myosin IIA/B knockout lead to an additive promoting effect and long-distance axon regeneration.
View Article and Find Full Text PDFThe anatomical structure of the mammalian cerebral cortex is the essential foundation for its complex neural activity. This structure is developed by proliferation, differentiation, and migration of neural progenitor cells (NPCs), the fate of which is spatially and temporally regulated by the proper gene. This study was used in utero electroporation and found that the well-known oncogene c-Myc mainly promoted NPCs' proliferation and their transformation into intermediate precursor cells.
View Article and Find Full Text PDFWhile axon regeneration is a key determinant of functional recovery of the nervous system after injury, it is often poor in the mature nervous system. Influx of extracellular calcium (Ca ) is one of the first phenomena that occur following axonal injury, and calcium/calmodulin-dependent protein kinase II (CaMKII), a target substrate for calcium ions, regulates the status of cytoskeletal proteins such as F-actin. Herein, we found that peripheral axotomy activates CaMKII in dorsal root ganglion (DRG) sensory neurons, and inhibition of CaMKII impairs axon outgrowth in both the peripheral and central nervous systems (PNS and CNS, respectively).
View Article and Find Full Text PDFThe inflammatory response is a critical regulator for the regeneration of axon following nervous system injury. Nuclear factor-kappa B (NF-κB) is characteristically known for its ubiquitous role in the inflammatory response. However, its functional role in adult mammalian axon growth remains elusive.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) are heteropentameric ligand-gated ion channels that mediate excitatory neurotransmission at the neuromuscular junction (NMJ) and other peripheral and central synapses. At the NMJ, acetylcholine receptors (AChRs) are constantly exposed to mechanical stress resulting from muscle contraction. It is therefore of interest to understand if their function is influenced by mechanical stimuli.
View Article and Find Full Text PDFBackground: Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined.
Methodology/principal Findings: In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites.