Metal-organic frameworks (MOFs) are advanced porous materials composed of metal ions and organic ligands, known for their unique structures and fascinating physio-chemical properties. To ensure their safe production and applications, it is crucial to thoroughly investigate their toxicity and environmental hazards. However, the potential risks of MOFs, particularly their impact on plants remained underexplored.
View Article and Find Full Text PDFBiomaterial composition and surface charge play a critical role in macrophage polarization, providing a molecular cue for immunomodulation and tissue regeneration. In this study, we developed bifunctional hydrogel inks for accelerating M2 macrophage polarization and exosome (Exo) cultivation for wound healing applications. For this, we first fabricated polyamine-modified three-dimensional (3D) printable hydrogels consisting of alginate/gelatin/polydopamine nanospheres (AG/NSPs) to boost M2-exosome (M2-Exo) secretion.
View Article and Find Full Text PDFRecently, deteriorated masonry structures aged over 30 years have shown serious structural problems. Simple and rapid maintenance plans are urgently needed for aging masonry structures. Polyurea (PU) is an effective retrofitting material for aging structures due to its easy spray application.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
The coal-fired power plant fly ash (FA) and bottom ash (BA) are gradually used as alternative materials in the concrete. However, knowledge of the leaching characteristics of using both incinerator ashes in concrete production is lacking. This work aimed to evaluate the leaching behavior of the FA and BA used in concrete production by employing batch and tank leaching tests.
View Article and Find Full Text PDFChronic tympanic membrane (TM) perforation is a tubotympanic disease caused by either traumatic injury or inflammation. A recent study demonstrated significant progress in promoting the regeneration of chronic TM perforations through the application of nanofibers with radially aligned nanostructures and controlled release of growth factors. However, radially aligned nanostructures with stem cell-stimulating factors have never been used.
View Article and Find Full Text PDFVolumetric muscle loss (VML) frequently results from traumatic incidents and can lead to severe functional disabilities. Hydrogels have been widely employed for VML tissue regeneration, which are unfortunately ineffective because of the lack of intimate contact with injured tissue for structural and mechanical support. Adhesive hydrogels allow for strong tissue connections for wound closure.
View Article and Find Full Text PDFNanomaterials associated with plant growth and crop cultivation revolutionize traditional concepts of agriculture. However, the poor reiterability of these materials in agricultural applications necessitates the development of environmentally-friendly approaches. To address this, biocompatible gelatin nanoparticles (GNPs) as nanofertilizers with a small size (≈150 nm) and a positively charged surface (≈30 mV) that serve as a versatile tool in agricultural practices is designed.
View Article and Find Full Text PDFThis study delved into the integration of carbon nanotubes (CNTs) in Ultra-High Performance Concrete (UHPC), exploring aspects such as mechanical properties, microstructure analysis, accelerated chloride penetration, and life service prediction. A dispersed CNT solution (0.025 to 0.
View Article and Find Full Text PDFAgriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale.
View Article and Find Full Text PDFOver the past few decades, hydrogels have attracted considerable attention as promising biomedical materials. However, conventional hydrogels require improved mechanical properties, such as brittleness, which significantly limits their widespread use. Recently, hydrogels with remarkably improved toughness have been developed; however, their low biocompatibility must be addressed.
View Article and Find Full Text PDFPlants (Basel)
January 2024
Plant glycine-rich RNA-binding proteins (GRPs) play crucial roles in the response to environmental stresses. However, the functions of in plants under heavy metal stress remain unclear. In the present study, in , the transcript level of was markedly increased by Ni but was decreased by Pb.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Bone regeneration remains a critical concern across diverse medical disciplines, because it is a complex process that requires a combinatorial approach involving the integration of mechanical, electrical, and biological stimuli to emulate the native cellular microenvironment. In this context, piezoelectric scaffolds have attracted considerable interest owing to their remarkable ability to generate electric fields in response to dynamic forces. Nonetheless, the application of such scaffolds in bone tissue engineering has been limited by the lack of a scaffold that can simultaneously provide both the intricate electromechanical environment and the biocompatibility of the native bone tissue.
View Article and Find Full Text PDFMicroscale and nanoscale cilia are ubiquitous in natural systems where they serve diverse biological functions. Bioinspired artificial magnetic cilia have emerged as a highly promising technology with vast potential applications, ranging from soft robotics to highly precise sensors. In this review, we comprehensively discuss the roles of cilia in nature and the various types of magnetic particles utilized in magnetic cilia; additionally, we explore the top-down and bottom-up fabrication techniques employed for their production.
View Article and Find Full Text PDFTissue Eng Part B Rev
August 2024
In recent decades, cultured meat has received considerable interest as a sustainable alternative to traditional meat products, showing promise for addressing the inherent problems associated with conventional meat production. However, current limitations on the scalability of production and extremely high production costs have prevented their widespread adoption. Therefore, it is important to develop novel engineering strategies to overcome the current limitations in large-scale cultured meat production.
View Article and Find Full Text PDFYeast, as a versatile microorganism, holds significant importance in various industries and research fields due to its remarkable characteristics. In the pursuit of biotechnological applications, cell-surface engineering including encapsulation has been proposed as a new strategy to interface with individual living yeast cells. While previous researches of yeast encapsulation with materials have shown promise, it often involves complex processes and lacks confirmation of condition-dependent yeast viability under harsh conditions.
View Article and Find Full Text PDFUltrasonic surface acoustic wave (SAW)-induced acoustic streaming flow (ASF) has been utilized for microfluidic flow control, patterning, and mixing. Most previous research employed cross-type SAW acousto-microfluidic mixers, in which the SAWs propagated perpendicular to the flow direction. In this configuration, the flow mixing was induced predominantly by the horizontal component of the acoustic force, which was usually much smaller than the vertical component, leading to energy inefficiency and limited controllability.
View Article and Find Full Text PDFMicrofracture technique for treating articular cartilage defects usually has poor clinical outcomes due to critical heterogeneity and extremely limited in quality. To improve the effects of current surgical technique (i.e.
View Article and Find Full Text PDFCyborg Bionic Syst
August 2023
Dysfunctional blood vessels are implicated in various diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Several studies have attempted to prevent and treat vascular diseases and understand interactions between these diseases and blood vessels across different organs and tissues. Initial studies were conducted using 2-dimensional (2D) in vitro and animal models.
View Article and Find Full Text PDFSupported lipid bilayers (SLBs) are commonly used to investigate interactions between cell membranes and their environment. These model platforms can be formed on electrode surfaces and analyzed using electrochemical methods for bioapplications. Carbon nanotube porins (CNTPs) integrated with SLBs have emerged as promising artificial ion channel platforms.
View Article and Find Full Text PDFPersonalized medicine aims to provide tailored medical treatment that considers the clinical, genetic, and environmental characteristics of patients. iPSCs have attracted considerable attention in the field of personalized medicine; however, the inherent limitations of iPSCs prevent their widespread use in clinical applications. That is, it would be important to develop notable engineering strategies to overcome the current limitations of iPSCs.
View Article and Find Full Text PDFInner ear organoids (IEOs) are 3D structures grown , which can mimic the complex cellular structure and function of the inner ear. IEOs are potential solutions to problems related to inner ear development, disease modeling, and drug delivery. However, current approaches in generating IEOs using chemical factors have a few limitations, resulting in unpredictable outcomes.
View Article and Find Full Text PDFNanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) on diverse ancestry groups are lacking, resulting in deficits of genetic discoveries and polygenic scores. We conducted GWAS for 76 phenotypes in Korean biobank data, namely the Korean Genome and Epidemiology Study (KoGES) (n = 72,298). Our analysis discovered 2,242 associated loci, including 122 novel associations, many of which were replicated in Biobank Japan (BBJ) GWAS.
View Article and Find Full Text PDFDelta age is a biomarker of brain aging that captures differences between the chronological age and the predicted biological brain age. Using multimodal data of brain MRI, genomics, and blood-based biomarkers and metabolomics in UK Biobank, this study investigates an explainable and causal basis of high delta age. A visual saliency map of brain regions showed that lower volumes in the fornix and the lower part of the thalamus are key predictors of high delta age.
View Article and Find Full Text PDFChronic rotator cuff tears (RCTs) are one of the most common injuries of shoulder pain. Despite the recent advances in surgical techniques and improved clinical outcomes of arthroscopically repaired rotator cuffs (RCs), complete functional recovery-without retear-of the RC tendon through tendon-to-bone interface (TBI) regeneration remains a key clinical goal to be achieved. Inspired by the highly organized nanostructured extracellular matrix in RC tendon tissue, we propose herein a tissue-engineered tendon nano-construct (TNC) for RC tendon regeneration.
View Article and Find Full Text PDF