Publications by authors named "Inderjit"

Article Synopsis
  • Plant diversity is crucial for ecosystems, biogeochemical cycles, and human welfare, but knowledge about its global distribution is incomplete, impacting research and conservation efforts.
  • The study utilized machine learning and statistical methods on 830 regional plant inventories to address hypotheses about vascular plant diversity, achieving high explanatory power for species richness (up to 80.9%) and phylogenetic richness (up to 83.3%).
  • Current climate and environmental heterogeneity were identified as primary drivers of plant diversity, and the research produced predictive maps that accurately estimate global plant diversity, aiding conservation and macroecology decisions.
View Article and Find Full Text PDF

Non-native invasive species (NIS) release chemicals into the environment that are unique to the invaded communities, defined as novel chemicals. Novel chemicals impact competitors, soil microbial communities, mutualists, plant enemies, and soil nutrients differently than in the species' native range. Ecological functions of novel chemicals and differences in functions between the native and non-native ranges of NIS are of immense interest to ecologists.

View Article and Find Full Text PDF

Vegetation patterning in water-limited and other resource-limited ecosystems highlights spatial self-organization processes as potentially key drivers of community assembly. These processes provide insight into predictable landscape-level relationships between organisms and their abiotic environment in the form of regular and irregular patterns of biota and resources. However, two aspects have largely been overlooked; the roles played by plant - soil-biota feedbacks and allelopathy in spatial self-organization, and their potential contribution, along with plant-resource feedbacks, to community assembly through spatial self-organization.

View Article and Find Full Text PDF
Article Synopsis
  • Biological invasions, particularly of alien plant species, are a significant concern in the Anthropocene, yet their distribution remains poorly understood, prompting this global analysis of contributing factors.
  • The study utilizes statistical models to assess how biogeographic, environmental, and socio-economic factors influence the richness of naturalized and invasive alien plants across 838 terrestrial regions, revealing that socio-economic factors are more significant for invasive species richness.
  • Findings indicate that warm-temperate and tropical regions exhibit higher naturalized plant richness, while islands show markedly higher richness compared to mainland, and the study suggests a need to address socio-economic influences to mitigate the impacts of plant invasions and achieve biodiversity goals.
View Article and Find Full Text PDF

Developed countries are producing policies to reduce the flow of invasive species and control or eradicate existing invasions, but most developing countries are under-resourced to tackle either aspect without help. Emerging economies, such as Brazil, Russia, India, China, and South Africa (BRICS), are responsible for donating many of the world's invasive species that have the potential to reach nearly all terrestrial biomes. Implementing a proactive 'facilitated network' model is urgently required to build capacity and stimulate effective appropriate invasion science.

View Article and Find Full Text PDF

Although gymnosperms were nearly swept away by the rise of the angiosperms in the Late Cretaceous, conifers, and pines ( species) in particular, survived and regained their dominance in some habitats. Diversification of pines into fire-avoiding (subgenus ) and fire-adapted (subgenus ) species occurred in response to abiotic and biotic factors in the Late Cretaceous such as competition with emerging angiosperms and changing fire regimes. Adaptations/traits that evolved in response to angiosperm-fuelled fire regimes and stressful environments in the Late Cretaceous were key to pine success and are also contributing to a new "pine rise" in some areas in the Anthropocene.

View Article and Find Full Text PDF

This dataset provides the Global Naturalized Alien Flora (GloNAF) database, version 1.2. GloNAF represents a data compendium on the occurrence and identity of naturalized alien vascular plant taxa across geographic regions (e.

View Article and Find Full Text PDF

All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data.

View Article and Find Full Text PDF

Soil microbial communities are one of the multiple factors that facilitate or resist plant invasion. Regional and biogeographic studies help to determine how soil communities and the processes mediated by soil microbes are linked to other mechanisms of invasion. Both the success of plant invasions and their impacts are profoundly influenced by a wide range of soil communities and the soil processes mediated by them.

View Article and Find Full Text PDF

Soil microbial communities and processes have repeatedly been shown to impact plant community assembly and population growth. Soil-driven effects may be particularly pronounced with the introduction of plants to non-native ranges, as introduced plants are not typically accompanied by transference of local soil communities. Here we describe how the mechanisms by which soil community processes influence plant growth overlap with several known and well-described mechanisms of plant invasion.

View Article and Find Full Text PDF

Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk.

View Article and Find Full Text PDF

We coordinated biogeographical comparisons of the impacts of an exotic invasive tree in its native and non-native ranges with a congeneric comparison in the non-native range. Prosopis juliflora is taxonomically complicated and with P. pallida forms the P.

View Article and Find Full Text PDF

Plants can release chemicals into the environment that suppress the growth and establishment of other plants in their vicinity: a process known as 'allelopathy'. However, chemicals with allelopathic functions have other ecological roles, such as plant defense, nutrient chelation, and regulation of soil biota in ways that affect decomposition and soil fertility. These ecosystem-scale roles of allelopathic chemicals can augment, attenuate or modify their community-scale functions.

View Article and Find Full Text PDF

Some invasive plant species appear to strongly suppress neighbors in their nonnative ranges but much less so in their native range. We found that in the field in its native range in Mexico, the presence of Ageratina adenophora, an aggressive Neotropical invader, was correlated with higher plant species richness than found in surrounding plant communities where this species was absent, suggesting facilitation. However, in two nonnative ranges, China and India, A.

View Article and Find Full Text PDF

A general understanding of biological invasions will provide insights into fundamental ecological and evolutionary problems and contribute to more efficient and effective prediction, prevention and control of invasions. We review recent papers that have proposed conceptual frameworks for invasion biology. These papers offer important advances and signal a maturation of the field, but a broad synthesis is still lacking.

View Article and Find Full Text PDF

Background: Allelopathic functions of plant-released chemicals are often studied through growth bioassays assuming that these chemicals will directly impact plant growth. This overlooks the role of soil factors in mediating allelopathic activities of chemicals, particularly non-volatiles. Here we examined the allelopathic potential of 8-hydroxyquinoline (HQ), a chemical reported to be exuded from the roots of Centaurea diffusa.

View Article and Find Full Text PDF

Soil communities can have profound effects on invasions of ecosystems by exotic plant species. We propose that there are three main pathways by which this can happen. First, plant-soil feedback interactions in the invaded range are neutral to positive, whereas native plants predominantly suffer from negative soil feedback effects.

View Article and Find Full Text PDF

Catechin is a highly studied but controversial allelochemical reported as a component of the root exudates of Centaurea maculosa. Initial reports of high and consistent exudation rates and soil concentrations have been shown to be highly inaccurate, but the chemical has been found in root exudates at and much less frequently in soil but sporadically at high concentrations. Part of the problem of detection and measuring phytotoxicity in natural soils may be due to the confounding effect of soil microbes, and little is known about interactions between catechin and soil microbes.

View Article and Find Full Text PDF

Background: Allelopathy (negative, plant-plant chemical interactions) has been largely studied as an autecological process, often assuming simplistic associations between pairs of isolated species. The growth inhibition of a species in filter paper bioassay enriched with a single chemical is commonly interpreted as evidence of an allelopathic interaction, but for some of these putative examples of allelopathy, the results have not been verifiable in more natural settings with plants growing in soil.

Methodology/principal Findings: On the basis of filter paper bioassay, a recent study established allelopathic effects of m-tyrosine, a component of root exudates of Festuca rubra ssp.

View Article and Find Full Text PDF

Many studies have shown that individuals from invasive populations of many different plant species grow larger than individuals from native populations and that this difference has a genetic basis. This increased vigor in invasive populations is thought to be due to life history tradeoffs, in which selection favors the loss of costly defense traits, thereby freeing resources that can be devoted to increased growth or fecundity. Despite the theoretical importance of such allocation shifts for invasions, there have been no efforts to understand apparent evolutionary shifts in defense-growth allocation mechanistically.

View Article and Find Full Text PDF

Volatile phytohormones or other chemicals can affect processes in distal plant parts but may also influence neighboring plants, and thereby function allelopathically. While this hypothesis has been widely discussed, rigorous tests are lacking. Transgenic plants, silenced in the production of an emitted chemical, are ideal tools to test the hypothesis that the release of a chemical can negatively influence the growth of neighbors (allelopathy).

View Article and Find Full Text PDF

Background: Exploring the residence time of allelochemicals released by plants into different soils, episodic exposure of plants to allelochemicals, and the effects of allelochemicals in the field has the potential to improve our understanding of interactions among plants.

Methodology/principal Findings: We conducted experiments in India and the USA to understand the dynamics of soil concentrations and phytotoxicity of (+/-)-catechin, an allelopathic compound exuded from the roots of Centaurea maculosa, to other plants in vitro and in soil. Experiments with single and pulsed applications into soil were conducted in the field.

View Article and Find Full Text PDF