Publications by authors named "Inchan Youn"

Glutamate-induced neuronal death is associated with neurodegeneration including cerebral ischemia. Several μ-opioid receptor antagonists exhibit a neuroprotective activity and have been considered as a potential therapeutic option for neurodegenerative disorders. For the first time, our current study unveiled the neuroprotective activity of selective δ-opioid receptor antagonists.

View Article and Find Full Text PDF

Gait analysis systems are critical for assessing motor function in rehabilitation and elderly care. This study aimed to develop and optimize an abnormal gait classification algorithm considering joint impairments using inertial measurement units (IMUs) and walkway systems. Ten healthy male participants simulated normal walking, walking with knee impairment, and walking with ankle impairment under three conditions: without joint braces, with a knee brace, and with an ankle brace.

View Article and Find Full Text PDF

Background: Identification of cortical loci for lower limb movements for stroke rehabilitation is crucial for better rehabilitation outcomes via noninvasive brain stimulation by targeting the fine-grained cortical loci of the movements. However, identification of the cortical loci for lower limb movements using functional MRI (fMRI) is challenging due to head motion and difficulty in isolating different types of movement. Therefore, we developed a custom-made MR-compatible footplate and leg cushion to identify the cortical loci for lower limb movements and conducted multivariate analysis on the fMRI data.

View Article and Find Full Text PDF

Background And Objective: The ventilatory threshold (VT) marks the transition from aerobic to anaerobic metabolism and is used to assess cardiorespiratory endurance. A conventional way to assess VT is cardiopulmonary exercise testing, which requires a gas analyzer. Another method for measuring VT involves calculating the heart rate variability (HRV) from an electrocardiogram (ECG) by computing the variability of heartbeats.

View Article and Find Full Text PDF

Anti-epidermal growth factor receptor (EGFR) antibody, cetuximab, therapy has significantly improved the clinical outcomes of patients with colorectal cancer, but the response to cetuximab can vary widely among individuals. We thus need strategies for predicting the response to this therapy. However, the current methods are unsatisfactory in their predictive power.

View Article and Find Full Text PDF

After spinal cord injury (SCI), the control of activated glial cells such as microglia and astrocytes has emerged as a promising strategy for neuropathic pain management. However, signaling mechanism involved in glial activation in the process of neuropathic pain development and maintenance after SCI is not well elucidated. In this study, we investigated the potential role and mechanism of the JAK2/STAT3 pathway associated with glial cell activation in chronic neuropathic pain development and maintenance after SCI.

View Article and Find Full Text PDF

Early detection of venous congestion (VC)-related diseases such as deep vein thrombosis (DVT) is important to prevent irreversible or serious pathological conditions. However, the current way of diagnosing DVT is only possible after recognizing advanced DVT symptoms such as swelling, pain, and tightness in affected extremities, which may be due to the lack of information on neuromechanical changes following VC. Thus, the goal of this study was to investigate acute neuromechanical changes in muscle electrical activity and muscle stiffness when VC was induced.

View Article and Find Full Text PDF

The accurate detection of the gait phase is crucial for monitoring and diagnosing neurological and musculoskeletal disorders and for the precise control of lower limb assistive devices. In studying locomotion mode identification and rehabilitation of neurological disorders, the concept of modular organization, which involves the co-activation of muscle groups to generate various motor behaviors, has proven to be useful. This study aimed to investigate whether muscle synergy features could provide a more accurate and robust classification of gait events compared to traditional features such as time-domain and wavelet features.

View Article and Find Full Text PDF

We propose a single-lead ECG-based heart rate variability (HRV) analysis algorithm to quantify autonomic nervous system activity during meditation. Respiratory sinus arrhythmia (RSA) induced by breathing is a dominant component of HRV, but its frequency depends on an individual's breathing speed. To address this RSA issue, we designed a novel HRV tachogram decomposition algorithm and new HRV indices.

View Article and Find Full Text PDF

Background: Recombinant tissue plasminogen activator (rtPA) has a short half-life, and additional hemorrhagic transformation (HT) can occur when treatment is delayed. Here, we report the design and thrombolytic performance of 3 [Formula: see text]m discoidal polymeric particles loaded with rtPA and superparamagnetic iron oxide nanoparticles (SPIONs), referred to as rmDPPs, to address the HT issues of rtPA.

Methods: The rmDPPs consisted of a biodegradable polymeric matrix, rtPA, and SPIONs and were synthesized via a top-down fabrication.

View Article and Find Full Text PDF

Sonothrombolysis with recombinant tissue plasminogen activator (rtPA) and microbubbles has been widely studied to enhance thrombolytic potential. Here, we report different sonothrombolysis strategy in nanoparticles using microbubbles cavitation. We found that different particles in shape exhibited different reactivity toward the cavitation, leading to a distinct sonothrombolytic potential.

View Article and Find Full Text PDF

Heart rate variability (HRV) is closely related to changes in the autonomic nervous system (ANS) associated with stress and pain. In this study, we investigated whether HRV could be used to assess cancer pain in mice with peritoneal metastases. At 12 days after cancer induction, positive indicators of pain such as physiological characteristics, appearance, posture, and activity were observed, and time- and frequency-domain HRV parameters such as mean R-R interval, square root of the mean squared differences of successive R-R intervals, and percentage of successive R-R interval differences greater than 5 ms, low frequency (LF), high frequency (HF), and ratio of LF and HF power, were found to be significantly decreased.

View Article and Find Full Text PDF

The joint angle during gait is an important indicator, such as injury risk index, rehabilitation status evaluation, etc. To analyze gait, inertial measurement unit (IMU) sensors have been used in studies and continuously developed; however, they are difficult to utilize in daily life because of the inconvenience of having to attach multiple sensors together and the difficulty of long-term use due to the battery consumption required for high data sampling rates. To overcome these problems, this study propose a multi-joint angle estimation method based on a long short-term memory (LSTM) recurrent neural network with a single low-frequency (23 Hz) IMU sensor.

View Article and Find Full Text PDF
Article Synopsis
  • Developing a clinical-grade electronic medicine for treating peripheral nerve disorders faces challenges due to the need for materials that mimic the flexibility and softness of natural nerves.
  • The newly designed adaptive self-healing electronic epineurium (A-SEE) provides a seamless interface by eliminating the need for sutures or glues, which simplifies surgical procedures.
  • Despite minor silver leakage, the A-SEE has shown promising results in bidirectional neural signal recording and stimulation in a rat model, suggesting its potential for future applications in treating neurological disorders.
View Article and Find Full Text PDF

Ultrasound stimulation (US) is reported to be a safe and useful technology for improving injured nerve regeneration. However, the intracellular mechanisms underlying its stimulatory effects are only partially understood. Mammalian target of rapamycin (mTOR) signaling is involved in neuronal survival and axonal outgrowth.

View Article and Find Full Text PDF

The goals of this study are the suggestion of a better classification method for detecting stressed states based on raw electrocardiogram (ECG) data and a method for training a deep neural network (DNN) with a smaller data set. We suggest an end-to-end architecture to detect stress using raw ECGs. The architecture consists of successive stages that contain convolutional layers.

View Article and Find Full Text PDF

Low-intensity, low-frequency ultrasound (LILFU) is the next-generation, non-invasive brain stimulation technology for treating various neurological and psychiatric disorders. However, the underlying cellular and molecular mechanism of LILFU-induced neuromodulation has remained unknown. Here, we report that LILFU-induced neuromodulation is initiated by opening of TRPA1 channels in astrocytes.

View Article and Find Full Text PDF

Chronic low back pain due to lumbar spinal stenosis (LSS) is common, costly, mechanistically complex, and clinically challenging. However, the factors and mechanisms causing and mediating chronic pain induced by cauda equina compression remain unclear. Here, we examined the role of cyclooxygenase (COX)-2 in infiltrated macrophages, a key mediator of inflammation, in chronic neuropathic pain by LSS using an animal model.

View Article and Find Full Text PDF

Diagnosis of patients with rheumatoid arthritis (RA) is essential for early and accurate drug treatment to protect the patient from joint bone erosion and relieve symptoms of the disease. In some cases, the RA patient's X-ray images and other clinical diagnostic methods are often difficult to distinguish from different diseases, such as gout, osteoarthritis, and other inflammatory conditions. Thus, methods for diagnosis of disease activity and real-time monitoring of therapeutic effect and accurate differentiation from other bone diseases are needed.

View Article and Find Full Text PDF

We developed a single-camera two-channel hemodynamic imaging system that uses near-infrared light to monitor the mouse brain in vivo with an exposed, un-thinned, and intact skull to explore the effect of Parkinson's disease on the resting state functional connectivity of the brain. To demonstrate our system's ability to monitor cerebral hemodynamics, we first performed direct electrical stimulation of an anesthetized healthy mouse brain and detected hemodynamic changes localized to the stimulated area. Subsequently, we developed a unilaterally lesioned 6-hydroxydopamine (hemi-parkinsonian) mouse model and detected the differences in functional connectivity between the normal and hemi-parkinsonian mouse brains by comparing the hemispheric hemodynamic correlations during the resting state.

View Article and Find Full Text PDF

Both self-healable conductors and stretchable conductors have been previously reported. However, it is still difficult to simultaneously achieve high stretchability, high conductivity, and self-healability. Here, we observed an intriguing phenomenon, termed "electrical self-boosting", which enables reconstructing of electrically percolative pathways in an ultrastretchable and self-healable nanocomposite conductor (over 1700% strain).

View Article and Find Full Text PDF

After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries including inflammation. Inflammatory response is one of the major events resulting in apoptosis, scar formation and neuronal dysfunction after SCI. Here, we investigated whether protocatechuic acid (PCA), a natural phenolic compound, would attenuate BSCB disruption and hemorrhage, leading to functional improvement after SCI.

View Article and Find Full Text PDF

Cuff electrodes have been introduced into functional neuromuscular stimulation systems to either obtain neural signals or elicit limb movements. Multiple electrodes must be implanted to construct a feedback control loop, including one electrode for acquisition and another for stimulation. Existing approaches require too much space inside the body and a complicated surgical procedure.

View Article and Find Full Text PDF