Cancers (Basel)
December 2024
Background: A phthalimide-functionalized heptamethine cyanine dye, named Ph790H, is used for targeted photothermal cancer therapy in vivo. We highlight that the chemical structure of Ph790H is newly designed and synthesized for the first time in this study.
Objectives: By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, the bifunctional near-infrared (NIR) fluorescent dye Ph790H can be preferentially accumulated in tumor without the need for additional targeting ligands, which is defined as the "structure-inherent tumor targeting" concept.
One of the most significant challenges for image-guided cancer-targeted therapy is to develop multifunctional optical contrast agents enabling simultaneous targeting and therapy. Herein, a feasible strategy is based on the incorporation of therapeutic moieties into the non-delocalized structure of polymethine indocyanines, known as the "structure-inherent targeting" concept. By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, a new type of multifunctional near-infrared fluorescent dye, Ph790H, that targets tumor without the need for additional targeting ligands is synthesized.
View Article and Find Full Text PDFIR-783, a commercially available near-infrared (NIR) heptamethine cyanine dye, has been used for selective tumor imaging in breast, prostate, cervical, and brain cancers in vitro and in vivo. Although the molecular mechanism behind the structure-inherent tumor targeting of IR-783 has not been well-demonstrated, IR-783 has unique properties such as a good water solubility and low cytotoxicity compared with other commercial heptamethine cyanine dyes. The goal of this study is to evaluate the phototherapeutic efficacy of IR-783 as a tumor-targeted photothermal agent in human colorectal cancer xenografts.
View Article and Find Full Text PDFMany efforts have been made to develop near-infrared (NIR) fluorescent dyes with high efficiency for the NIR laser-induced phototherapy of cancer. However, the low tumor targetability and high nonspecific tissue uptake of NIR dyes in vivo limit their applications in preclinical cancer imaging and therapy. Among the various NIR dyes, squaraine (SQ) dyes are widely used due to their high molar extinction coefficient, intense fluorescence, and excellent photostability.
View Article and Find Full Text PDFThe near-infrared (NIR) fluorescence imaging modality has great potential for application in biomedical imaging research owing to its unique characteristics, such as low tissue autofluorescence and noninvasive visualization with high spatial resolution. Although a variety of NIR fluorophores are continuously reported, the commercially available NIR fluorophores are still limited, owing to complex synthetic processes and poor physicochemical properties. To address this issue, a small molecular NIR fluorophore (SMF800) was designed and developed in the present work to improve in vivo target-specific fluorescence imaging.
View Article and Find Full Text PDFNear-infrared (NIR) fluorophores have attracted great attention due to their excellent optical and photothermal properties. Among them, a bone-targeted NIR fluorophore (named P800SO3) contains two phosphonate groups, which play important roles in binding with hydroxyapatite (HAP) as the main mineral component of bones. In this study, biocompatible and NIR fluorescent HAP nanoparticles functionalized with P800SO3 and polyethylene glycol (PEG) were readily prepared for tumor-targeted imaging and photothermal therapy (PTT).
View Article and Find Full Text PDFIn this study, we prepared visible light-curable methacrylated glycol chitosan (MGC) hydrogel patches for the prenatal treatment of fetal myelomeningocele (MMC) and investigated their feasibility using a retinoic acid-induced fetal MMC rat model. 4, 5, and 6 w/v% of MGC were selected as candidate precursor solutions, and photo-cured for 20 s, because the resulting hydrogels were found to possess concentration dependent tunable mechanical properties and structural morphologies. Moreover, these materials exhibited no foreign body reactions with good adhesive properties in animal studies.
View Article and Find Full Text PDFTargeted phototheranostic nanosystems involving both cancer-specific near-infrared (NIR) fluorescence imaging and NIR light-induced phototherapy have shown great potential to improve cancer detection and treatment. In this study, a bifunctional nanocomplex based on low-molecular-weight hyaluronic acid (LMW-HA) and chitosan oligosaccharide lactate (COL) conjugating a zwitterionic NIR dye (ZW800-1) was rationally designed and prepared, and it was simultaneously used to enhance tumor accumulation and photothermal therapy (PTT). When HA-COL-ZW nanocomplexes were intravenously injected into mice bearing NCI-H460 tumors, HA-COL-ZW revealed increased tumor accumulation with prolonged tumor retention.
View Article and Find Full Text PDFHeptamethine cyanine dyes are widely used for in vivo near-infrared (NIR) fluorescence imaging and NIR laser-induced cancer phototherapy due to their good optical properties. Since most of heptamethine cyanine dyes available commercially are highly hydrophobic, they can usually be used for in vivo applications after formation of complexes with blood plasma proteins, especially serum albumin, to increase aqueous solubility. The complex formation between cyanine dyes and albumin improves the chemical stability and optical property of the hydrophobic cyanine dyes, which is the bottom of their practical use.
View Article and Find Full Text PDFTargeted tumor imaging can effectively enable image-guided surgery and precise cancer therapy. Finding the right combination of anticancer drugs and near-infrared (NIR) fluorophores is the key to targeted photothermal cancer treatment. In this study, a tumor-targetable NIR fluorophore conjugate with rapid body clearance was developed for accurate tumor imaging and effective photothermal therapy (PTT).
View Article and Find Full Text PDFImproving the tumor targeting of anticancer drugs to minimize systemic exposure remains challenging. The chemical conjugation of anticancer drugs with various near-infrared (NIR) fluorophores may provide an effective approach to improve NIR laser-induced cancer phototherapy. Towards this end, the selection of NIR fluorophores conjugated with hydrophobic anticancer drugs is an important consideration for targeted cancer photothermal therapy (PTT).
View Article and Find Full Text PDFTo overcome the limitations of brown adipose tissue (BAT) imaging with MRI and PET/CT, near-infrared (NIR) fluorescence imaging has been utilized in living animals because it is highly sensitive, noninvasive, nonradioactive, and cost-effective. To date, only a few NIR fluorescent dyes for detecting BAT have been reported based on the structure-inherent targeting strategy. Among them, IR-786, a commercial cyanine dye, was used firstly for quantitative NIR imaging of BAT perfusion in 2003.
View Article and Find Full Text PDFInvasive aspergillosis is a critical complication in immunocompromised patients with hematologic malignancies or with viral pneumonia caused by influenza virus or SARS‑CoV‑2. Although early and accurate diagnosis of invasive aspergillosis can maximize clinical outcomes, current diagnostic methods are time-consuming and poorly sensitive. Here, we assess the ability of 2-deoxy-2-F-fluorosorbitol (F-FDS) positron emission tomography (PET) to specifically and noninvasively detect Aspergillus infections.
View Article and Find Full Text PDFA tumor-targeted near-infrared (NIR) fluorophore CA800Cl was developed based on commercially available IR-786 by modulating its physicochemical properties. IR-786, a hydrophobic cationic heptamethine cyanine fluorophore, was previously recognized as a mitochondria-targeting NIR agent with excellent optical properties. Owing to the poor tumor specificity of IR-786 itself, in vivo studies on tumor-targeted imaging have not yet been investigated.
View Article and Find Full Text PDFZW800-1, a representative zwitterionic near-infrared (NIR) fluorophore, can minimize background tissue uptake owing to its balanced surface charges, and therefore, is widely used for improved NIR fluorescence imaging. As ZW800-1 has no tumor targetability, tumor imaging is highly dependent on the ability of the molecules conjugated to the ZW800-1. To enable tumor targeting using ZW800-1 without additional conjugation, we developed a tumor-targetable and renal-clearable ZW800-1 analog (ZW800-AM) based on the structural modification of ZW800-1.
View Article and Find Full Text PDFThe combination of near-infrared (NIR) fluorophores and photothermal therapy (PTT) provides a new opportunity for safe and effective cancer treatment. However, the precise molecular design of functional NIR fluorophores with desired properties, such as high tumor targetability and low nonspecific uptake, remains challenging. In this study, a renal-clearable NIR fluorophore conjugate with high tumor targetability was developed for efficient photothermal cancer therapy.
View Article and Find Full Text PDFSince carbon dots (CDs) exhibit excellent biocompatibility, low cytotoxicity, near-infrared (NIR) absorbance, and superior photostability, many types of CDs are considered as powerful candidates for photothermal therapy (PTT) applications. However, the development of a desirable CD is still difficult due to insufficient photothermal conversion, thus resulting in the use of high laser power densities at a high dose of CDs for the PTT effect. Herein, bioinspired sulfur-doped CDs (S-CDs) with strong NIR absorbance were prepared from flowers a facile hydrothermal method for enhancing the photothermal conversion efficiency.
View Article and Find Full Text PDFA small fraction of cancer cells known as cancer stem cells (CSCs) are considered to give rise to differentiated cancer cells and have been proposed to predict cancer recurrence and metastasis. There is further evidence that CSCs may act as metastatic precursors of epithelial-mesenchymal transition (EMT). In the present study, we investigated the key molecules involved in maintaining the stability of CSCs by inducing ectopic overexpression of CD133 to characterize EMT in human prostate cancer cell lines, including PC-3, DU145, and LnCaP cells.
View Article and Find Full Text PDFBackground Aims: Tracking administered natural killer (NK) cells in vivo is critical for developing an effective NK cell-based immunotherapy against human hepatocellular carcinoma (HCC). Here the authors established a new molecular imaging using ex vivo-activated NK cells and investigated real-time biodistribution of administered NK cells during HCC progression.
Methods: Ex vivo-expanded NK cells from healthy donors were labeled with a near-infrared lipophilic cytoplasmic dye, and their proliferation, surface receptor expression and cytotoxicity activity were evaluated.
Prostate cancer (PCa) morbidity in the majority of patients is due to metastatic events, which are a clinical obstacle. Therefore, a better understanding of the mechanism underlying metastasis is imperative if we are to develop novel therapeutic strategies. Receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) regulates bone remodelling.
View Article and Find Full Text PDFBackground: The discovery of receptor activator of nuclear factor-ĸB ligand (RANKL) as the final effector in the pathogenesis of osteoporosis has led to a better understanding of bone remodeling. When RANKL binds to its receptor (RANK), osteoclastic differentiation and activation are initiated. Herein, we propose a strategy using a novel RANKL variant as a competitive inhibitor for RANKL.
View Article and Find Full Text PDFWe prepared a drug carrier which consisted of injectable methacrylated glycol chitosan (MGC) hydrogel, and a conjugate of 6-monodeoxy-6-monoamino-β-cyclodextrin⋅hydrochloride (6-NH-β-CD⋅HCl), polyethylene glycol (PEG), and folic acid (FA) for the local delivery and improved cellular uptake of paclitaxel (PTX) (MGC/CDPF-ic-PTX). CDPF refers to a conjugate of 6-NH-β-CD⋅HCl, PEG, and FA. The anti-cancer effect was investigated using a xenograft mouse model.
View Article and Find Full Text PDFBackground: Recently, it was reported that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL and was shown to compete with RANK to bind RANKL and suppress canonical RANK signaling during osteoclast differentiation. The critical role of the protein triad RANK-RANKL in osteoclastogenesis has made their binding an important target for the development of drugs against osteoporosis. In this study, point-mutations were introduced in the RANKL protein based on the crystal structure of the RANKL complex and its counterpart receptor RANK, and we investigated whether LGR4 signaling in the absence of the RANK signal could lead to the inhibition of osteoclastogenesis.
View Article and Find Full Text PDFAssessing lymph node (LN) status during tumor resection is fundamental for the staging of colorectal cancer. Current guidelines require a minimum of 12 LNs to be harvested during resection and ultra-staging regional lymph nodes by sentinel lymph node (SLN) assessment is being extensively investigated. The current study presents novel near-infrared (NIR) fluorescent dyes for simultaneous pan lymph node (PanLN; regional) and SLN mapping.
View Article and Find Full Text PDF