ACS Appl Mater Interfaces
October 2024
Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility and quality. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD.
View Article and Find Full Text PDFShell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) and density functional theory (DFT) are used to probe Cl adsorption and the order-disorder phase transition associated with the c(2 × 2) Cl adlayer on Cu(100) in acid media. A two-component ν(Cu-Cl) vibrational band centered near 260 ± 1 cm is used to track the potential dependence of Cl adsorption. The potential dependence of the dominant 260 cm component tracks the coverage of the fluctional c(2 × 2) Cl phase on terraces in good agreement with the normalized intensity of the c(2 × 2) superstructure rods in prior surface X-ray diffraction (SXRD) studies.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2023
Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant, host lattice, and relative stoichiometry. The distribution of these intercalant ions across given crystals, however, is less well defined-particularly away from ideal packing stoichiometries-and a convenient probe to assess potential longer-range ordering of intercalants is lacking.
View Article and Find Full Text PDFSeparating oxygen from air to create oxygen-enriched gas streams is a process that is significant in both industrial and medical fields. However, the prominent technologies for creating oxygen-enriched gas streams are both energy and infrastructure intensive as they use cryogenic temperatures or materials that adsorb N from air. The latter method is less efficient than the methods that adsorb O directly.
View Article and Find Full Text PDFTemperature is a fundamental physical quantity important to the physical and biological sciences. Measurement of temperature within an optically inaccessible three-dimensional (3D) volume at microscale resolution is currently limited. Thermal magnetic particle imaging (T-MPI), a temperature variant of magnetic particle imaging (MPI), hopes to solve this deficiency.
View Article and Find Full Text PDFCovalent modification of carbon nanotubes is a promising strategy for engineering their electronic structures. However, keeping modification sites in registration with a nanotube lattice is challenging. We report a solution using DNA-directed, guanine (G)-specific cross-linking chemistry.
View Article and Find Full Text PDFTwo-dimensional (2D) materials that exhibit charge density waves (CDWs)-spontaneous reorganization of their electrons into a periodic modulation-have generated many research endeavors in the hopes of employing their exotic properties for various quantum-based technologies. Early investigations surrounding CDWs were mostly focused on bulk materials. However, applications for quantum devices require few-layer materials to fully utilize the emergent phenomena.
View Article and Find Full Text PDFMass spectrometry and Raman vibrational spectroscopy were used to follow competitive dynamics between adsorption and desorption of H and anions during potential cycling of three low-index Cu surfaces in acid electrolytes. Unique to Cu(111) is a redox wave for surface hydride formation coincident with anion desorption, while the reverse reaction of hydride decomposition with anion adsorption yields H by recombination rather than oxidation to HO. Charge imbalance between the reactions accounts for the asymmetric voltammetry in SO, ClO, PO, and Cl electrolytes with pH 0.
View Article and Find Full Text PDFIn targeting reduced valent lanthanide chalcogenides, we report the first nanoparticle synthesis of the mixed-valent ferromagnets Eu S and EuSm S . Using divalent lanthanide halides with bis(trimethylsilyl)sulfide and oleylamine, we prepared nanoparticles of EuS, Eu S , EuSm S , SmS , and Sm S . All nanoparticle phases were identified using powder X-ray diffraction, transmission electron microscopy was used to confirm morphology and nanoparticle size, and magnetic susceptibility measurements for determining the ordering temperatures and valence.
View Article and Find Full Text PDFPolymer chain orientation is crucial to understanding the polymer dynamics at interfaces formed during thermoplastic material extrusion additive manufacturing. The flow field and rapid cooling produced during material extrusion can result in chains which are oriented and stretched, which has implications for interdiffusion and crystallization. Polarized Raman spectroscopy offers a non-destructive and surface sensitive method to quantify chain orientation.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2020
Plasmonic tip-sample junctions, at which the incident and scattered optical fields are localized and optimally enhanced, are often exploited to achieve ultrasensitive and highly spatially localized tip-enhanced Raman scattering (TERS). Recent work has demonstrated that the sensitivity and spatial resolution that are required to probe single molecules are attainable in such platforms. In this work, we observe and rationalize comparable TERS from few-layer WSe single crystals exfoliated onto Au- and Cr-coated Si substrates, using a plasmonic TERS probe excited with a 638 nm laser.
View Article and Find Full Text PDFThe discovery of 2-dimensional (2D) materials, such as CrI, that retain magnetic ordering at monolayer thickness has resulted in a surge of both pure and applied research in 2D magnetism. Here, we report a magneto-Raman spectroscopy study on multilayered CrI, focusing on two additional features in the spectra that appear below the magnetic ordering temperature and were previously assigned to high frequency magnons. Instead, we conclude these modes are actually zone-folded phonons.
View Article and Find Full Text PDFInt J Magn Part Imaging
January 2020
Thermometry based on magnetic nanoparticles (MNPs) is an emerging technology that allows for remote temperature measurements throughout a volume that are impossible to achieve using conventional probe-based or optical methods. This metrology is based on the temperature-dependent nature of these particles' magnetization; however, commercially available MNPs generally display insufficient magneto-thermosensitivity for practical use in applications near room temperature. Here we present engineered MNPs based on cobalt-doped ferrites developed for 200 K - 400 K thermometry applications.
View Article and Find Full Text PDFThe growth of transition metal dichalcogenide (TMDC) alloys provides an opportunity to experimentally access information elucidating how optical properties change with gradual substitutions in the lattice compared with their pure compositions. In this work, we performed growths of alloyed crystals with stoichiometric compositions between pure forms of NbSe and WSe, followed by an optical analysis of those alloys by utilizing Raman spectroscopy and spectroscopic ellipsometry.
View Article and Find Full Text PDFOver the past decade, substantial progress has been made in the chemical control (chiral enrichment, length sorting, handedness selectivity, and filling substance) of single-wall carbon nanotubes (SWCNTs). Recently, it was shown that large, horizontally aligned films can be created out of postprocessed SWCNT solutions. Here, we use machine-vision automation and parallelization to simultaneously produce globally aligned SWCNT films using pressure-driven filtration.
View Article and Find Full Text PDFMonolayer epitaxial graphene (EG) has been shown to have clearly superior properties for the development of quantized Hall resistance (QHR) standards. One major difficulty with QHR devices based on EG is that their electrical properties drift slowly over time if the device is stored in air due to adsorption of atmospheric molecular dopants. The crucial parameter for device stability is the charge carrier density, which helps determine the magnetic flux density required for precise QHR measurements.
View Article and Find Full Text PDFColloidal-based solution syntheses offer a scalable and cost-efficient means of producing 2D nanomaterials in high yield. While much progress has been made toward the controlled and tailorable synthesis of semiconductor nanocrystals in solution, it remains a substantial challenge to fully characterize the products' inherent electronic transport properties. This is often due to their irregular morphology or small dimensions, which demand the formation of colloidal assemblies or films as a prerequisite to performing electrical measurements.
View Article and Find Full Text PDFThe information provided in this data article will cover the growth parameters for monolayer, epitaxial graphene, as well as how to verify the layer homogeneity by confocal laser scanning and optical microscopy. The characterization of the subsequently fabricated quantum Hall device is shown for example cases during a series of environmental exposures. Quantum Hall data acquired from a CYTOP encapsulation is also provided.
View Article and Find Full Text PDFDeveloping processes to controllably dope transition-metal dichalcogenides (TMDs) is critical for optical and electrical applications. Here, molecular reductants and oxidants are introduced onto monolayer TMDs, specifically MoS , WS , MoSe , and WSe . Doping is achieved by exposing the TMD surface to solutions of pentamethylrhodocene dimer as the reductant (n-dopant) and "Magic Blue," [N(C H -p-Br) ]SbCl , as the oxidant (p-dopant).
View Article and Find Full Text PDFHomogeneous, single-crystal, monolayer epitaxial graphene (EG) is the one of most promising candidates for the advancement of quantized Hall resistance (QHR) standards. A remaining challenge for the electrical characterization of EG-based quantum Hall devices as a useful tool for metrology is that they are electrically unstable when exposed to air due to the adsorption of and interaction with atmospheric molecular dopants. The resulting changes in the charge carrier density become apparent by variations in the surface conductivity, the charge carrier mobility, and may result in a transition from n-type to p-type conductivity.
View Article and Find Full Text PDFMonolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride (-BN and -BN) films.
View Article and Find Full Text PDF