Publications by authors named "Gurkov"

Solar ultraviolet (UV) is among the most important ecological factors shaping the composition of biota on the planet's surface, including the upper layers of waterbodies. Inhabitants of dark environments recently evolving from surface organisms provide natural opportunities to study the evolutionary losses of UV adaptation mechanisms and better understand how those mechanisms function at the biochemical level. The ancient Lake Baikal is the only freshwater reservoir where deep-water fauna emerged, and its diverse endemic amphipods (Amphipoda, Crustacea) now inhabit the whole range from highly transparent littoral to dark depths of over 1600 m, which makes them a convenient model to study UV adaptation.

View Article and Find Full Text PDF

Comparative studies of reproductive biology and formation of reproductive isolation need appropriate model systems, such as groups of related species. The amphipods (Crustacea: Amphipoda) of ancient Lake Baikal are an attractive group for such works, as they consist of several hundred species that radiated within the lake and have very different levels of intraspecific genetic diversity and reproduction timing. We have previously shown that one of the most widely distributed and best studied littoral species, Eulimnogammarus verrucosus (Gersfeldt, 1858), comprises cryptic species exhibiting a post-zygotic reproductive barrier.

View Article and Find Full Text PDF

Endemic amphipods (Crustacea: Amphipoda) of Lake Baikal represent an outstanding example of large species flocks occupying a wide range of ecological niches and originating from a handful of ancestor species. Their development took place at a restricted territory and is thus open for comprehensive research. Such examples provide unique opportunities for studying behavioral, anatomic, or physiological adaptations in multiple combinations of environmental conditions and thus attract considerable attention.

View Article and Find Full Text PDF

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on hemolymph of crustacean hosts can influence their physiology, especially under stressful conditions.

View Article and Find Full Text PDF

The model yeast, Saccharomyces cerevisiae, is a popular object for both fundamental and applied research, including the development of biosensors and industrial production of pharmaceutical compounds. However, despite multiple studies exploring S. cerevisiae transcriptional response to various substances, this response is unknown for some substances produced in yeast, such as D-lactic acid (DLA).

View Article and Find Full Text PDF

The implantation of optical sensors is a promising method for monitoring physiological parameters of organisms in vivo. For this, suitable hydrogels are required that can provide a biocompatible interface with the organism's tissues. Amorphous hydrogel is advantageous for administration in animal organs due to its ease of injection compared to resilient analogs.

View Article and Find Full Text PDF

The multixenobiotic resistance (MXR) mechanism has been demonstrated to be present in a wide range of species, including aquatic organisms. However, amphipods (Crustacea: Malacostraca: Amphipoda), which constitute a large order of arthropods, are extremely poorly studied in this regard. Information on MXR proteins in these animals would be highly relevant, as some amphipods are important models in ecotoxicology due to their roles in many freshwater environments, including the ancient Lake Baikal.

View Article and Find Full Text PDF

Implantable optical sensors are emerging tools that have the potential to enable constant real-time monitoring of various internal physiological parameters. Such a possibility will open new horizons for health control not only in medicine, but also in animal husbandry, including aquaculture. In this study, we analyze different organs of commonly farmed rainbow trout () as implantation sites for fluorescent sensors and propose the adipose fin, lacking an endoskeleton, as the optimal choice.

View Article and Find Full Text PDF

Implantable sensors based on shaped biocompatible hydrogels are now being extensively developed for various physiological tasks, but they are usually difficult to implant into small animals. In this study, we tested the long-term in vivo functionality of pH-sensitive implants based on amorphous 2.7% polyacrylamide hydrogel with the microencapsulated fluorescent probe SNARF-1.

View Article and Find Full Text PDF

Ancient lakes are known speciation hotspots. One of the most speciose groups in the ancient Lake Baikal are gammaroid amphipods (Crustacea: Amphipoda: Gammaroidea). There are over 350 morphological species and subspecies of amphipods in Baikal, but the extent of cryptic variation is still unclear.

View Article and Find Full Text PDF

Lake Baikal is the only freshwater reservoir inhabited by deep-water fauna, which originated mostly from shallow-water ancestors. and are endemic scavenger amphipods (Amphipoda, Crustacea) dwelling in wide depth ranges of the lake covering over 1300 m. had been previously collected close to the surface, while has never been found above the depth of 47 m.

View Article and Find Full Text PDF

Endolymphatic hydrops (EH) is considered the histological hallmark of Meniere's disease. Visualization of EH has been achieved by special sequences of inner ear magnetic resonance imaging (MRI) with a gadolinium-based contrast agent intravenous or intratympanic administration. Although it has been applied for more than 10 years since 2007, a unified view on this technique has not yet been achieved.

View Article and Find Full Text PDF

Multicomponent heterogeneous systems containing volatile amphiphiles are relevant to the fields ranging from drug delivery to atmospheric science. Research presented here discloses the individual interfacial activity and adsorption-evaporation behavior of amphiphilic aroma molecules at the liquid-vapor interface. The surface tension of solutions of nonmicellar volatile surfactants linalool and benzyl acetate, fragrances as such, was compared with that of the conventional surfactant sodium dodecyl sulfate (SDS) under equilibrium as well as under no instantaneous equilibrium, including a fast-adsorbing regime.

View Article and Find Full Text PDF

Studies of invertebrates have shown that the internal environment of crustaceans is not always sterile in normal conditions, and in many species, it can be populated by microorganisms even in the absence of any visible pathological processes in the body. This observation raises the question of whether genetically modified indigenous hemolymph microorganisms can be used for biotechnological purposes inside the crustacean either as local producers of some compounds or as sensors to physiological parameters. In this study, we tested the ability of the bacteria isolated from the hemolymph of the amphipod Eulimnogammarus verrucosus to hide from the cellular immune response of the host as the most important feature for their potential long-term application in vivo.

View Article and Find Full Text PDF

Polyelectrolyte microcapsules are among the most promising carriers of various sensing substances for their application inside the bloodstream of vertebrates. The long-term effects of biodegradable microcapsules in mammals are relatively well studied, but this is not the case for non-biodegradable microcapsules, which may be even more generally applicable for physiological measurements. In the current study, we introduced non-biodegradable polyelectrolyte microcapsules coated with polyethylene glycol (PMs-PEG) into the circulatory system of zebrafish to assess their long-term effects on fish internal organs with histopathologic analysis.

View Article and Find Full Text PDF

Background: Vision is a crucial sense for the evolutionary success of many animal groups. Here we explore the diversity of visual pigments (opsins) in the transcriptomes of amphipods (Crustacea: Amphipoda) and conclude that it is restricted to middle (MWS) and long wavelength-sensitive (LWS) opsins in the overwhelming majority of examined species.

Results: We evidenced (i) parallel loss of MWS opsin expression in multiple species (including two independently evolved lineages from the deep and ancient Lake Baikal) and (ii) LWS opsin amplification (up to five transcripts) in both Baikal lineages.

View Article and Find Full Text PDF
Article Synopsis
  • Hydropic Ear Disease (Menière) causes vertigo due to fluid buildup in the inner ear, known as endolymphatic hydrops (ELH), but reliable imaging has been limited to high-field MRI (3 T) until recent advancements.
  • This study explores the feasibility of imaging ELH using a lower magnetic field strength of 1.5 T and aims to create specific grading systems for cochlear and vestibular ELH.
  • A retrospective analysis of 30 patients revealed clear imaging results at 1.5 T, showing promise for wider use of this imaging method in clinical settings.
View Article and Find Full Text PDF

Lake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6-23.

View Article and Find Full Text PDF

Menière's disease causes paroxysmal rotatory vertigo, due to endolymphatic hydrops, an accumulation of endolymph in the endolymphatic space of the labyrinth. Its major symptoms are attacks of rotatory vertigo lasting minutes to hours, with unilateral hearing loss, tinnitus and aural fullness. As the disease progresses, attacks happen less often, but hearing loss and tinnitus gradually become permanent.

View Article and Find Full Text PDF

The ancient Lake Baikal is the largest source of liquid freshwater on Earth and home to a unique fauna. Several hundred mostly cold-adapted endemic amphipod species inhabit Baikal, an ecosystem that is already being influenced by global change. In this study, we characterized the core proteome and heat stress-induced changes in a temperature-tolerant endemic amphipod, Eulimnogammarus cyaneus, using a proteogenomic approach (PRIDE dataset PXD013237) to unravel the molecular mechanisms of the observed adverse effects.

View Article and Find Full Text PDF

Background: For clinical confirmation of the diagnosis of hydropic ear disease (HED) (Menière) by MR imaging, two routes of contrast enhancement of the perilymphatic space are currently being used: intratympanic and intravenous. While unilateral intratympanic contrast application generally enables a higher perilymph signal intensity and image quality, the intravenous route allows for imaging of both inner ears simultaneously. It is conceivable that intratympanic contrast application to one ear would result in a failure to detect endolymphatic hydrops in a given patient if the hydrops is present only in the other ear.

View Article and Find Full Text PDF

Background: Human immunology research is often limited to peripheral blood. However, there are important differences between blood immune cells and their counterparts residing in secondary lymphoid organs, such as in the case of germinal center (GC) T follicular helper (Tfh) cells and GC B cells.

Methods: We developed a versatile ex vivo lymphoid organ culture platform that is based on human pharyngeal tonsils (adenoids) and allows for drug testing.

View Article and Find Full Text PDF

Microsporidia are a highly diverse group of single-celled eukaryotic parasites related to fungi and infecting hosts belonging to all groups of eukaryotes, including some protists, invertebrate and vertebrate animals. We investigated the diversity of microsporidia in the Holarctic amphipod species Gammarus lacustris from mostly, but not limited to, water bodies in the Lake Baikal region. Ribosomal DNA sequencing and host transcriptome sequencing data from various works show that this species is predominantly infected by representatives of the genus Dictyocoela and probably has some features underlying this specific interaction.

View Article and Find Full Text PDF

Background: Cochlear implantation is an important method of hearing rehabilitation. Earlier studies have shown the influence of implantation on the vestibular system. However, until now, the effect of hearing rehabilitation with cochlear implants (CI) on postural control and body stability has not been sufficiently studied.

View Article and Find Full Text PDF