RSC Adv
September 2024
Expression of concern for 'Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin-agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles' by Reza Eivazzadeh-Keihan , , 2021, , 17914-17923, https://doi.org/10.1039/D1RA01300A.
View Article and Find Full Text PDFRSC Adv
May 2021
ACS Appl Mater Interfaces
July 2021
Based on the promising biomedical developments in wound healing strategies, herein, a new nanobiocomposite scaffold was designed and presented by incorporation of carboxymethyl cellulose hydrogels prepared using epichlorohydrin as a cross-linking agent (CMC hydrogel), a natural silk fibroin (SF) protein, and magnesium hydroxide nanoparticles (Mg(OH) NPs). Biological evaluation of the CMC hydrogel/SF/Mg(OH) nanobiocomposite scaffold was conducted via in vitro cell viability assays and in vivo assays, red blood cell hemolysis, and antibiofilm assays. Considering the cell viability percentage of Hu02 cells (84.
View Article and Find Full Text PDFIn this study, a nanobiocomposite scaffold was fabricated by combining sodium alginate, polyvinyl alcohol, silk fibroin and magnesium hydroxide nanorods. The structural characteristics and properties of the scaffold were identified by field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA), Fourier-transformed infrared (FT-IR) and energy dispersive X-Ray (EDX) analyses. To introduce the application, biocompatibility, mechanical properties and biological activity of the scaffold were obtained.
View Article and Find Full Text PDF