Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN). Activation of the neuroinflammatory response has a pivotal role in PD. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for various nerve injuries, but there are limited reports on their use in PD and the underlying mechanisms remain unclear.
View Article and Find Full Text PDFBackground And Aims: Refractory epilepsy is also known as drug-resistant epilepsy with limited clinical treatment. Benefitting from its safety and easy availability, olfactory mucosa mesenchymal stem cells (OM-MSCs) are considered a preferable MSC source for clinical application. This study aims to investigate whether OM-MSCs are a promising alternative source for treating refractory epilepsy clinically and uncover the mechanism by OM-MSCs administration on an epileptic mouse model.
View Article and Find Full Text PDFMaple syrup urine disease (MSUD) is an inborn error of branched-chain amino acid metabolism affecting several thousand individuals worldwide. MSUD patients have elevated levels of plasma leucine and its metabolic product α-ketoisocaproate (KIC), which can lead to severe neurotoxicity, coma, and death. Patients must maintain a strict diet of protein restriction and medical formula, and periods of noncompliance or illness can lead to acute metabolic decompensation or cumulative neurological impairment.
View Article and Find Full Text PDFThe emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes.
View Article and Find Full Text PDFThe introduction of molecular complexity in an atom- and step-efficient manner remains an outstanding goal in modern synthetic chemistry. Artificial biosynthetic pathways are uniquely able to address this challenge by using enzymes to carry out multiple synthetic steps simultaneously or in a one-pot sequence. Conducting biosynthesis ex vivo further broadens its applicability by avoiding cross-talk with cellular metabolism and enabling the redesign of key biosynthetic pathways through the use of non-natural cofactors and synthetic reagents.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration, such as the induction of angiogenesis, particularly under hypoxic conditions. However, the molecular mechanisms underlying hypoxic MSC activation remain largely unknown. MSC-derived extracellular vesicles (EVs) are vital mediators of cell-to-cell communication and can be directly utilized as therapeutic agents for tissue repair and regeneration.
View Article and Find Full Text PDFCerebral ischemia/reperfusion injury causes a series of intricate cascade reactions in brain tissue causing apoptosis and proinflammatory programmed cell death known as pyroptosis of nerve cells. The dysfunction of target organelle mitochondria plays a key role in the process of neuronal apoptosis and pyroptosis. Mesenchymal stem cells (MSCs) have been widely used in the experimental or clinical treatment of various ischemic diseases, but the therapeutic efficacy of MSCs on cerebral ischemia-reperfusion injury need to be improved.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have presented a promising neuroprotective effect in cerebral ischemia/reperfusion (I/R). Olfactory mucosa MSCs (OM-MSCs), a novel source of MSCs located in the human nasal cavity, are easy to obtain and situated for autologous transplantation. The present study was designed to evaluate the neuroprotective effects of OM-MSCs on cerebral I/R injury and the possible mechanisms.
View Article and Find Full Text PDFOlfactory mucosa mesenchymal stem cells (OM-MSCs) have exhibited their effectiveness in central nervous system diseases and provided an appealing candidate for the treatment of ischemic stroke. Previous evidence have shown that Golgi apparatus (GA) secretory pathway Ca-ATPase isoform1 (SPCA1) was a potential therapeutic target for ischemic stroke. In this study, we explored the neuroprotective mechanism of OM-MSCs and its effect on the expression and function of SPCA1 during cerebral ischemia/reperfusion.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) have been used for the treatment of neuronal injury and neurodegenerative diseases. Their underlying mechanism may involve increased secretion of paracrine factors, which promotes tissue repair. Presently, exosomes have been regarded as important components of paracrine secretion and paracrine factors.
View Article and Find Full Text PDFMicroglial cells are the first line immune cells that initiate inflammatory responses following cerebral ischemia/reperfusion(I/R) injury. Microglial cells are also associated with a novel subtype of pro-inflammatory programmed cell death known as pyroptosis. Research has been directed at developing treatments that modulate inflammatory responses and protect against cell death caused by cerebral I/R.
View Article and Find Full Text PDFEnzyme-catalyzed reactions have begun to transform pharmaceutical manufacturing, offering levels of selectivity and tunability that can dramatically improve chemical synthesis. Combining enzymatic reactions into multistep biocatalytic cascades brings additional benefits. Cascades avoid the waste generated by purification of intermediates.
View Article and Find Full Text PDFTransplantation of olfactory ensheathing cells (OECs) has been shown to enhance synapse formation. However, the mechanisms underlying this effect are not completely understood. We performed profiling of the OEC and astrocyte secretomes via a proteomics approach, in case hevin secreted by astrocytes might be involved in the formation of synapses.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
February 2021
Mesenchymal Stem Cells (MSCs) are distributed in many parts of the human body, including the bone marrow, placenta, umbilical cord, fat, and nasal mucosa. One of the unique features of MSCs is their multidirectional differentiation potential, including the ability to undergo osteogenesis, adipogenesis, and chondrogenesis, and to produce neurons, endothelial cells, Schwann cells, medullary nucleus cells, cardiomyocytes, and alveolar epithelial cells. MSCs have thus become a hot research topic in recent years.
View Article and Find Full Text PDFAim: To investigate whether the human olfactory mucosa mesenchymal stem cells (OM-MSCs) can differentiate into photoreceptor cells .
Methods: Through the olfactory mucosa adherent method, olfactory mucosa was isolated, cultured and identified among mesenchymal stem cells. The cell surface markers were analyzed by flow cytometry, induced to differentiate into retinal photoreceptor cells , and the expression of rhodopsin was observed and identified by Immunofluorescence and Western blot methods.
Olfactory mucosa mesenchymal stem cells (OM-MSCs) display significant clonogenic activity and may be easily propagated for Parkinson's disease therapies. Methods of inducing OM-MSCs to differentiate into dopaminergic (DAergic) neurons using olfactory ensheathing cells (OECs) are thus an attractive topic of research. We designed a hypoxic induction protocol to generate DAergic neurons from OM-MSCs using a physiological oxygen (O) level of 3% and OEC-conditioned medium (OCM; HI group).
View Article and Find Full Text PDFWhile the formation of colloidal aggregates leads to artifacts in early drug discovery, their composition makes them attractive as nanoparticle formulations for targeted drug delivery as the entire nanoparticle is composed of drug. The typical transient stability of colloidal aggregates has inhibited exploiting this property. To overcome this limitation, we investigated a series of proteins to stabilize colloidal aggregates of the chemotherapeutic, fulvestrant, including the following: bovine serum albumin, a generic human immunoglobulin G, and trastuzumab, a therapeutic human epidermal growth factor receptor 2 antibody.
View Article and Find Full Text PDFBackground: Temperature is an important parameter in the microenvironment of neural stem cells (NSCs); however, little is known about the precise effects of hyperthermia on fate determination in NSCs or the role of long non-coding (lnc)RNAs in this process. This was addressed in the present study using NSCs cultured at two different temperatures.
Methods: NSCs were divided into 37NSC and 40NSC groups that were cultured at 37°C or 40°C, respectively, for 72 h.
Clostridium perfringens is a commensal member of the human gut microbiome and an opportunistic pathogen whose genome encodes a suite of putative large, multi-modular carbohydrate-active enzymes that appears to play a role in the interaction of the bacterium with mucin-based carbohydrates. Among the most complex of these is an enzyme that contains a presumed catalytic module belonging to glycoside hydrolase family 31 (GH31). This large enzyme, which based on its possession of a GH31 module is a predicted α-glucosidase, contains a variety of non-catalytic ancillary modules, including three CBM32 modules that to date have not been characterized.
View Article and Find Full Text PDFTo explore whether hypoxic condition could promote the olfactory mucosa mesenchymal stem cells (OM-MSCs) to differentiate into neurons with the olfactory ensheathing cells (OECs) supernatant and the potential mechanisms. Methods: The OM-MSCs and OECs were isolated and cultured, and they were identified by flow cytometry and immunofluorescence. The OM-MSCs were divided into three groups: a 3%O2+ HIF-1α inhibitors (lificiguat: YC-1) + OECs supernatant group (Group A) , a 3%O2 + OECs supernatant group (Group B) and a 21%O2 + OECs supernatant group (Control group).
View Article and Find Full Text PDFColloidal aggregates of small molecules are the most common artifact in early drug discovery, sequestering and inhibiting target proteins without specificity. Understanding their structure and mechanism has been crucial to developing tools to control for, and occasionally even exploit, these particles. Unfortunately, their polydispersity and transient stability have prevented exploration of certain elementary properties, such as how they pack.
View Article and Find Full Text PDFβ-Lactamases are bacterial enzymes conferring resistance to β-lactam antibiotics in clinically-relevant pathogens, and represent relevant drug targets. Recently, the identification of new boronic acids (i.e.
View Article and Find Full Text PDFMorphine is an alkaloid from the opium poppy used to treat pain. The potentially lethal side effects of morphine and related opioids-which include fatal respiratory depression-are thought to be mediated by μ-opioid-receptor (μOR) signalling through the β-arrestin pathway or by actions at other receptors. Conversely, G-protein μOR signalling is thought to confer analgesia.
View Article and Find Full Text PDFNasal olfactory mucosa mesenchymal stem cells (OM-MSCs) have the ability to promote regeneration in the nervous system in vivo. Moreover, with view to the potential for clinical application, OM-MSCs have the advantage of being easily accessible from patients and transplantable in an autologous manner, thus eliminating immune rejection and contentious ethical issues. So far, most studies have been focused on the role of OM-MSCs in central nervous system replacement.
View Article and Find Full Text PDF