IEEE Trans Neural Syst Rehabil Eng
May 2024
Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) offer a non-invasive means of communication through high-speed speller systems. However, their efficiency is highly dependent on individual training data acquired during time-consuming calibration sessions. To address the challenge of data insufficiency in SSVEP-based BCIs, we introduce SSVEP-DAN, the first dedicated neural network model designed to align SSVEP data across different domains, encompassing various sessions, subjects, or devices.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
The recent development of closed-loop EEG phase-triggered transcranial magnetic stimulation (TMS) has advanced potential applications of adaptive neuromodulation based on the current brain state. Closed-loop TMS involves instantaneous acquisition of the EEG rhythm, timing prediction of the target phase, and triggering of TMS. However, the accuracy of EEG phase prediction algorithms is largely influenced by the system's transport delay, and their relationship is rarely considered in related work.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Functional near infrared spectroscopy (fNIRS) is a neuroimaging technique that has grown vigorously in recent years. With noticeable attention, machine learning methods have also been applied to fNIRS. However, the current approach lacks interpretability of the results.
View Article and Find Full Text PDF. This study aims to establish a generalized transfer-learning framework for boosting the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) by leveraging cross-domain data transferring..
View Article and Find Full Text PDFIEEE J Biomed Health Inform
June 2021
Recently, the advances in passive brain-computer interfaces (BCIs) based on electroencephalogram (EEG) have shed light on real-world neuromonitoring technologies. However, human variability in the EEG activities hinders the development of practical applications of EEG-based BCI. To tackle this problem, many transfer-learning techniques perform supervised calibration.
View Article and Find Full Text PDFObjective: This paper proposes a novel device-to-device transfer-learning algorithm for reducing the calibration cost in a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) speller by leveraging electroencephalographic (EEG) data previously acquired by different EEG systems.
Methods: The transferring is done by projecting the scalp-channel EEG signals onto a shared latent domain across devices. Three spatial filtering techniques, including channel averaging, canonical correlation analysis (CCA), and task-related component analysis (TRCA), were employed to extract the shared responses from different devices.
Inter- and intra-subject variability pose a major challenge to decoding human brain activity in brain-computer interfaces (BCIs) based on non-invasive electroencephalogram (EEG). Conventionally, a time-consuming and laborious training procedure is performed on each new user to collect sufficient individualized data, hindering the applications of BCIs on monitoring brain states (e.g.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2018
Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Human variability in electroencephalogram (EEG) poses significant challenges for developing practical real-world applications of brain-computer interfaces (BCIs). The intuitive solution of collecting sufficient user-specific training/calibration data can be very labor-intensive and time-consuming, hindering the practicability of BCIs. To address this problem, transfer learning (TL), which leverages existing data from other sessions or subjects, has recently been adopted by the BCI community to build a BCI for a new user with limited calibration data.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
January 2017
Steady state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has gained a lot of attention due to its robustness and high information transfer rate (ITR). However, transitioning well-controlled laboratory-oriented BCI demonstrations to real-world applications poses severe challenges for this exciting field. For instance, conducting BCI experiments usually requires skilled technicians to abrade the area of skin underneath each electrode and apply an electrolytic gel or paste to acquire high-quality SSVEPs from hair-covered areas.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Recent advances in mobile electroencephalogram (EEG) acquisition based on dry electrodes have started moving Brain-Computer Interface (BCI) applications from well-controlled laboratory settings to real-world environments. However, the application mechanisms and high impedance of dry electrodes over the hair-covered areas remain challenging for everyday use of BCI. In addition, whole-scalp recordings are not always necessary or applicable due to various practical constrains.
View Article and Find Full Text PDFIn America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway.
View Article and Find Full Text PDFRecent advances in mobile electroencephalogram (EEG) systems, featuring non-prep dry electrodes and wireless telemetry, have enabled and promoted the applications of mobile brain-computer interfaces (BCIs) in our daily life. Since the brain may behave differently while people are actively situated in ecologically-valid environments versus highly-controlled laboratory environments, it remains unclear how well the current laboratory-oriented BCI demonstrations can be translated into operational BCIs for users with naturalistic movements. Understanding inherent links between natural human behaviors and brain activities is the key to ensuring the applicability and stability of mobile BCIs.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
Movement-related changes such as event-related desynchronizationcan (ERD) and event-related synchronization (ERS) can be found in human subthalamic nucleus (STN) with analysis on local field potentials (LFP) recorded from Parkinson's disease (PD) patients. Besides traditional time-frequency (TF) analysis, we introduced nonlinear analysis, bispectral and approximate entropy (ApEn), to measure the signal nonlinear correlation and regularity in neural activities. Movement-related changes were found in the beta band, bicoherence and ApEn, and variation during stationary movement is more available by nonlinear methods.
View Article and Find Full Text PDF