The advent of evanescent field based fiber optic biosensor and advancements in nanotechnology has create an excellent opportunity in label-free detection of biomarkers which plays vital role in the early, rapid and accurate diagnosis of acute diseases. In this work, we demonstrate a high sensitive Molybdenum Tungsten Disulfide (MoWS2) coated side polished fiber (SPF) biosensor for accurate and early diagnosis of cardio vascular disease (CVD). The Cardiac Troponins I (cTnI) is identified as a biomarker of interest for early and rapid diagnonis of CVD.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2022
Underwater image processing has been shown to exhibit significant potential for exploring underwater environments. It has been applied to a wide variety of fields, such as underwater terrain scanning and autonomous underwater vehicles (AUVs)-driven applications, such as image-based underwater object detection. However, underwater images often suffer from degeneration due to attenuation, color distortion, and noise from artificial lighting sources as well as the effects of possibly low-end optical imaging devices.
View Article and Find Full Text PDFA high-precision Complementary Metal-Oxide-Semiconductor (CMOS) temperature sensor for (−5 °C, 120 °C) temperature range is designed and analyzed in this investigation. The proposed design is featured with a temperature range selection circuit so that the thermistor linear circuit automatically switches to a corresponding calibration loop in light of the temperature range besides the analysis of the calibration method. It resolves the problem that the temperature range of a single thermistor temperature sensor is too small.
View Article and Find Full Text PDFThis paper presents a highly sensitive flexural plate-wave (FPW)-based microsystem for rapid detection of tetrahydrocannabinol (THC) in human urine. First, a circular-type interdigital transducer (IDT) was integrated with a circular-type silicon-grooved reflective grating structure (RGS) to reduce insertion loss. Then, with lower insertion loss (-38.
View Article and Find Full Text PDFUltrasonic transcutaneous energy transfer is an effective method for powering implanted devices noninvasively. Nevertheless, the amount of power harvested by the implanted receiver is sensitive to the distance and orientation of the external transmitting transducer attached to the skin with respect to the implanted receiving transducer. This paper describes an ultrasonic power transfer link whose harvested power is controlled by an inductive link.
View Article and Find Full Text PDFA protein concentration measurement system with two-port flexural plate-wave (FPW) biosensors using a frequency-shift readout technique is presented in this paper. The proposed frequency-shift readout method employs a peak detecting scheme to measure the amount of resonant frequency shift. The proposed system is composed of a linear frequency generator, a pair of peak detectors, two registers, and a subtractor.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
October 2011
A prototype of a one-time-implantable spinal cord stimulation (SCS) system using wireless power and data-transmission techniques is presented in this paper. The power of the implant is induced by wireless coil coupling, and duplex amplitude-shift keying-load-shift keying wireless communication is used so that digital packets can be transmitted by the same inductive link. The proposed novel ASK demodulator attains high demodulation performance and small area without using any resistors and capacitors.
View Article and Find Full Text PDFThis paper proposes ultrasonic transcutaneous energy transfer (UTET) based on a kerfless transmitter with Gaussian radial distribution of its radiating surface velocity. UTET presents an attractive alternative to electromagnetic TET, where a low power transfer density of less than 94 mW/cm(2) is sufficient. The UTET is operated with a continuous wave at 650 kHz and is intended to power devices implanted up to 50mm deep.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
March 2008
A mini-invasive system for long-term bladder urine pressure measurement system is presented. Not only is the design cost reduced, but also the reliability is enhanced by using a 1-atm canceling sensing instrumentation amplifier (IA). Because the urine pressure inside the bladder does not vary drastically, both the sleeping and working modes are required in order to save the battery power for long-term observation.
View Article and Find Full Text PDFThis study presents an implantable microcontroller-based bi-directional transmission system with an inductive link designed for biological signal sensing. The system comprises an external module and an implantable module. The external module incorporates a high-efficiency class-E transceiver with amplitude modulation scheme and a data recovery reader.
View Article and Find Full Text PDF