Publications by authors named "Chia-Hung Lee"

Photobleaching and phototoxicity can induce detrimental effects on cell viability and compromise the integrity of collected data, particularly in studies utilizing super-resolution microscopes. Given the involvement of multiple factors, it is currently challenging to propose a single set of standards for assessing the potential of phototoxicity. The objective of this paper is to present empirical data on the effects of photobleaching and phototoxicity on mitochondria during super-resolution imaging of mitochondrial structure and function using Airyscan and the fluorescent structure dyes Mitotracker green (MTG), 10-N-nonyl acridine orange (NAO), and voltage dye Tetramethylrhodamine, Ethyl Ester (TMRE).

View Article and Find Full Text PDF

We present super-resolution microscopy of isolated functional mitochondria, enabling real-time studies of structure and function (voltages) in response to pharmacological manipulation. Changes in mitochondrial membrane potential as a function of time and position can be imaged in different metabolic states (not possible in whole cells), created by the addition of substrates and inhibitors of the electron transport chain, enabled by the isolation of vital mitochondria. By careful analysis of structure dyes and voltage dyes (lipophilic cations), we demonstrate that most of the fluorescent signal seen from voltage dyes is due to membrane bound dyes, and develop a model for the membrane potential dependence of the fluorescence contrast for the case of super-resolution imaging, and how it relates to membrane potential.

View Article and Find Full Text PDF

Recently, the development of anti-cancer approaches using different physical or chemical pathways has shifted from monotherapy to synergistic therapy, which can enhance therapeutic effects. As a result, enormous efforts have been devoted to developing various delivery systems encapsulated with dual agents for synergistic effects and to combat cancer cells acquired drug resistance. In this study, we show how to make Institute of Bioengineering and Nanotechnology (IBN)-1-based mesoporous silica nanoparticles (MSNs) for multifunctional drug delivery to overcome drug resistance cancer therapy.

View Article and Find Full Text PDF

Combinatorial therapies have garnered enormous interest from researchers in efficiently devastating malignant tumors through synergistic effects. To explore the combinatorial approach, multiple therapeutic agents are typically loaded in the delivery vehicles, controlling their release profiles and executing subsequent therapeutic purposes. Herein, we report the fabrication of core (silica)-shell (mesoporous silica nanoparticles, MSNs) architectures to deliver methylene blue (MB) and cupric doxorubicin (Dox) as model drugs for synergistic photodynamic therapy (PDT), chemotherapy, and chemodynamic therapy (CDT).

View Article and Find Full Text PDF

Peptide conformational imprints (PCIs) offer a promising perspective to directly generate binding sites for preserving enzymes with high catalytic activity and stability. In this study, we synthesized a new chiral cross-linker cost-effectively for controlling the matrix morphology of PCIs on magnetic particles (PCIMPs) to stabilize their recognition capability. Meanwhile, based on the flank part of the sequences on papain (PAP), three epitope peptides were selected and synthesized.

View Article and Find Full Text PDF

We demonstrate a fast and easy-to-use three-dimensional printed microfluidic platform for mitochondria isolation from cell and tissue lysates based on inertial microfluidics. We present and quantify the quality of the isolated mitochondria by measuring the respiration rate under various conditions. We demonstrate that the technology produces vital mitochondria of equal quality to traditional, but more burdensome, differential centrifugation.

View Article and Find Full Text PDF
Article Synopsis
  • Tensile tests on electroplated copper (Cu) films revealed that the strength of these films is closely linked to the density of their nano-twin grain structures, with higher densities resulting in greater fracture strength.
  • The density of the nano-twin structure can be controlled by adjusting the concentration of gelatin in the Cu-sulfate electrolyte solution.
  • Analysis showed that plastic deformation in these nano-twinned films is primarily caused by a de-twinning mechanism activated during necking, involving the formation and collapse of ledges due to dislocation interactions with twin boundaries.
View Article and Find Full Text PDF

Boron and nitrogen co-doped carbon dots (B, N-CDs) were fabricated through a simple, one-step hydrothermal reaction of citric acid, boric acid, and tris base. The obtained B, N-CDs exhibit excitation-dependent fluorescence, high quantum yield (QY), biocompatibility, photostability, and aqueous solubility. The QY was substantially increased to 57% by doping boron atoms.

View Article and Find Full Text PDF

In this study, a methodology utilizing peptide conformational imprints (PCIs) as a tool to specifically immobilize porcine pancreatic alpha-trypsin (PPT) at a targeted position is demonstrated. Owing to the fabrication of segment-mediated PCIs on the magnetic particles (PCIMPs), elegant cavities complementary to the PPT structure are constructed. Based on the sequence on targeted PPT, the individual region of the enzyme is trapped with different template-derived PCIMPs to show certain types of inhibition.

View Article and Find Full Text PDF

The surface modification of two-dimensional (2D) nanocontainers with versatile chemical functionalities offers enormous advantages in medicine owing to their altered physicochemical properties. In this study, we demonstrate the fabrication of surface-functionalized layered double hydroxides (LDHs) towards their use as effective intestinal bile acid sequestrants. To demonstrate these aspects, the LDHs are initially modified with an amino silane, N-(3-trimethoxysilylpropyl) diethylenetriamine (LDHs-N3),which, on the one hand, subsequently used for the fabrication of the dendrimer by repetitive immobilization of ethylene diamine using methyl acrylate as a spacer.

View Article and Find Full Text PDF

We present the first ever broadband, calibrated electrical connection to the inside of a cell. The interior of a vital, living cell contains multiple dynamic and electrically active organelles such as mitochondria, chloroplasts, lysosomes, and the endoplasmic reticulum. However, little is known about the detailed electrical activity inside the cell.

View Article and Find Full Text PDF

Although butylidenephthalide (BP) is an efficient anticancer drug, its poor bioavailability renders it ineffective for treating drug-resistant brain tumors. However, this problem is overcome through the use of noninvasive delivery systems, including intranasal administration. Herein, the bioavailability, drug stability, and encapsulation efficiency (EE, up to 95%) of BP were improved by using cyclodextrin-encapsulated BP in liposomal formulations (CDD1).

View Article and Find Full Text PDF

Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes.

View Article and Find Full Text PDF

Since their invention, periodic mesoporous organosilicas (PMOs), an innovative class of materials based on organic as well as inorganic hybrid nanocomposites, have gathered enormous interest owing to their advantageous physicochemical attributes over the pristine mesoporous silica nanoparticles (MSNs). To further increase the interactions with the therapeutic guest species and subsequent compatibility as well as the physicochemical properties of PMOs, we demonstrate the post-hydroxylation of benzene-bridged PMO-based nanoparticles for photodynamic therapy (PDT). Initially, the hydrophobic benzene group in the PMO framework is modified through electrophilic substitution-assisted hydroxylation mediated by Fenton as well as Fenton-like reactions utilizing divalent and trivalent metal salts, respectively.

View Article and Find Full Text PDF

The enormous influence of bacterial resistance to antibiotics has led researchers toward the development of various advanced antibacterial modalities. In this vein, nanotechnology-based devices have garnered interest owing to their excellent morphological as well as physicochemical features, resulting in augmented therapeutic efficacy. Herein, to overcome the multidrug resistance (MDR) in bacteria, we demonstrate the fabrication of a versatile design based on the copper-doped mesoporous silica nanoparticles (Cu-MSNs).

View Article and Find Full Text PDF

Kolliphor EL (K-EL) is among the most useful surfactants in the preparation of emulsions. However, it is associated with low hydrophobic drug loading in the resulting emulsified formulation. In this study, a formulation for intranasal administration of butylidenephthalide (Bdph), a candidate drug against glioblastoma (GBM), was prepared.

View Article and Find Full Text PDF

Alzheimer's disease (AD), an age-related neurodegenerative disease, the most common causes of dementia is a multifactorial pathology categorized by a complex etiology. Numerous nutraceuticals have been clinically evaluated, but some of the trials failed. However, natural compounds have some limitations due to their poor bioavailability, ineffective capability to cross the blood-brain barrier, or less therapeutic effects on AD.

View Article and Find Full Text PDF

Dioscorins, the major storage proteins of yam tubers, exert immunomodulatory activities. To improve oral bioavailability of dioscorins in the intestine, recombinant dioscorin (rDioscorin) was coated with N,N,N-trimethyl chitosan (TMC) and tripolyphosphate (TPP), resulting in the formation of TMC-rDio-TPP nanoparticles (NPs). The loading capacity and entrapment efficiency of rDioscorin in the NPs were 26 ± 0.

View Article and Find Full Text PDF

Recently, multidrug resistance (MDR) has become a major clinical chemotherapeutic burden that robustly diminishes the intracellular drug levels through various mechanisms. To overcome the doxorubicin (Dox) resistance in tumor cells, we designed a hierarchical nanohybrid system possessing copper-substituted mesoporous silica nanoparticles (Cu-MSNs). Further, Dox was conjugated to copper metal in the Cu-MSNs framework through a pH-sensitive coordination link, which is acutely sensitive to the tumor acidic environment (pH 5.

View Article and Find Full Text PDF

During the past few decades, supercritical fluid (SCF) has emerged as an effective alternative for many traditional pharmaceutical manufacturing processes. Operating active pharmaceutical ingredients (APIs) alone or in combination with various biodegradable polymeric carriers in high-pressure conditions provides enhanced features with respect to their physical properties such as bioavailability enhancement, is of relevance to the application of SCF in the pharmaceutical industry. Herein, recent advances in drug delivery systems manufactured using the SCF technology are reviewed.

View Article and Find Full Text PDF

Natural supplements comprise good efficacy with less adverse effects as against diabetic therapy, but their advancement as anti-diabetic agents is unsatisfactory with regard to the delivery system. Dipeptidyl peptidase-4 (DPP4)/CD26) can degrade glucagon-like pepetide-1 (GLP-1) which renders a decrease of blood glucose levels. 16-hydroxycleroda-3,13-dine-16,15-olide (HCD) extracted from Polyalthia longifolia, exhibits numerous medicinal potentials including hypoglycemic potential.

View Article and Find Full Text PDF

The extensive impact of antibiotic resistance has led to the exploration of new anti-bacterial modalities. We designed copper impregnated mesoporous silica nanoparticles (Cu-MSN) with immobilizing silver nanoparticles (SNPs) to apply photodynamic inactivation (PDI) of antibiotic-resistant E. coli.

View Article and Find Full Text PDF

The use of nanotechnology to overcome multidrug resistance (MDR) in cancer cells has been predominant. Herein, we report the conjugation of copper(ii)-doxorubicin complexes on the surfaces of layered double hydroxide nanoparticles (LDHs) along with ascorbic acid intercalation in the gallery space to demonstrate synergistic effects to conquer MDR. The pH-sensitive release of doxorubicin (Dox) and the sustained release of ascorbic acid (AA) generate high amounts of hydrogen peroxide intracellularly that concomitantly results in conversion to cytotoxic free radicals through a copper(ii)-catalyzed Fenton-like reaction.

View Article and Find Full Text PDF

A relationship between the chenodeoxycholate (CDC) monomer concentration and the total concentration of CDC was established using a kinetic dialysis technique. Meanwhile, the sizes of the formed simple CDC micelles were measured by a quasielastic light-scattering (QLS) technique to be nearly constant. The QLS results led to a suggestion for equilibrium models of CDC aggregate formation.

View Article and Find Full Text PDF

We designed a biodegradable nanocarrier of layered double hydroxide (LDH) for photodynamic therapy (PDT) based on the intercalation of a palladium porphyrin photosensitizer (PdTCPP) in the gallery of LDH for melanoma theragnosis. Physical and chemical characterizations have demonstrated the photosensitizer was stable in the layered structures. In addition, the synthesized nanocomposites rendered extremely efficacious therapy in the B16F10 melanoma cell line by improving the solubility of the hydrophobic PdTCPP photosensitizer.

View Article and Find Full Text PDF