Publications by authors named "Chengzhi Hu"

Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level.

View Article and Find Full Text PDF

Solar water evaporation (SWE) has emerged as an appealing method for water and salt recovery from hypersaline wastewater. However, different ions usually transfer and accumulate uncontrollably during ion-water separation, making salt fractionalization impractical for conventional SWE, and the resulting mixed salts are hard to use and still require significant costs for disposal. To achieve salt fractionalization and reutilization, achieving ion-water and ion-ion separation simultaneously are crucial in advancing SWE toward sustainability.

View Article and Find Full Text PDF

Low temperature generally restricts biological activity, slowing down electron transfer in biogeochemical cycles and causing a series of environmental problems such as nitrogen pollution. We present a strategy to boost electron transfer in microbial cell at low temperatures via stimulation with low current. It is demonstrated by establishing a constructed wetland system coupled with solar powered microbial electrolysis cell, which enhances microbial activity through external micro currents (18.

View Article and Find Full Text PDF

Chronic wound poses a serious risk to diabetic patients, primarily due to damaged skin microvasculature and prolonged inflammation at the wound site. Mesenchymal stem cell (MSC) therapy utilizing microgels as a cell delivery system has shown promise in promoting wound healing by enhancing cell viability and the secretion of bioactive factors. Retaining sufficient MSCs at injury sites is crucial for optimal therapeutic outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Seasonal algal blooms pose a risk to drinking water quality, and oxidative treatment can effectively remove algal cells but releases algal organic matter (AOM) that can complicate water treatment.
  • Different oxidants (like chlorine and ozone) impact the molecular characteristics of AOM, with ozone causing the most significant changes in its composition.
  • The study highlights that while oxidative treatment can reduce harmful reactions during water disinfection, it may also lead to the formation of new byproducts, including some that could be more concerning for water safety.
View Article and Find Full Text PDF
Article Synopsis
  • Severe membrane fouling and low methane content in biogas reduce the effectiveness of anaerobic membrane bioreactors (AnMBR) for energy recovery.
  • A new AnMBR design combines the electrochemical hydrogen evolution reaction (eHAnMBR) with a titanium membrane-cathode to enhance biogas quality and control membrane fouling using a sacrificed iron anode.
  • This innovative approach leads to a 28% increase in biogas purity and a 46% boost in methane production, while also reducing membrane pressure and improving overall wastewater treatment efficiency.
View Article and Find Full Text PDF

Living cells can rapidly adjust their metabolic activities in response to external stimuli, leading to fluctuations in intracellular temperature and reactive oxygen species (ROS) levels. Monitoring these parameters is essential for understanding cellular metabolism, particularly during dynamic biological processes. In this study, we present a bifunctional nanoprobe capable of simultaneous measurement of ROS levels and temperature within single cells.

View Article and Find Full Text PDF

Accurately predicting drinking water quality is critical for intelligent water supply management and for maintaining the stability and efficiency of water treatment processes. This study presents an optimized time series machine learning approach for accurately predicting multivariate drinking water quality, explicitly considering the time-dependent effects of reagent dosing. By leveraging data from a full-scale treatment plant, we constructed feature-engineered time series datasets incorporating influent water quality parameters, reagent dosages and effluent water characteristics.

View Article and Find Full Text PDF

Optical patterning of colloidal particles is a scalable and cost-effective approach for creating multiscale functional structures. Existing methods often use high-intensity light sources and customized optical setups, making them less feasible for large-scale microfabrication processes. Here, we report an optical patterning method for semiconductor nanoparticles by light-triggered modulation of their surface charge.

View Article and Find Full Text PDF

The sustainable development strategy shifts water treatment from pollution removal to resource recovery. Here, an electrochemical resource-recovery anaerobic membrane bioreactor (eRAnMBR) that employed a magnesium plate and conductive membrane as dual anodes is presented and shows excellent performance in carbon, nitrogen, and phosphorus recovery, as well as 95% membrane anti-fouling. The Mg released alters the physicochemical properties of sludge, unblocking the cake layer, and recovers ammonium and phosphate, yielding 60.

View Article and Find Full Text PDF

Semi-artificial photosynthetic system (SAPS) that combines enzymes or cellular organisms with light-absorbing semiconductors, has emerged as an attractive approach for nitrogen conversion, yet faces the challenge of reaction pathway regulation. Herein, we find that photoelectrons can transfer from the -C≡N groups at the edge of cyano-rich carbon nitride (g-CN-CN) to nitrate reductase (NarGH), while the direct electron transfer to nitrite reductase (cdNiR) is inhibited due to the physiological distance limit of active sites (>14 Å). By means of the directional electron transfer between g-CN-CN and extracted biological enzymes, the product of the denitrification reaction was switched from inert N to usable nitrite with an unprecedented selectivity of up to 95.

View Article and Find Full Text PDF

Liquid-liquid extraction (LLE) combined with the N blow-down method is a promising tool for bioanalysis of drinking water. However, detailed information on which disinfection byproduct (DBP) classes are retained in LLE extracts is currently unavailable. In this study, the recovery of seven classes of volatile DBPs and total adsorbable organic halogens (TOX) during the LLE method, combined with three common N blow-down methods, for bioanalysis in real tap water was analyzed at a 2-L scale, along with their corresponding cytotoxicity.

View Article and Find Full Text PDF

Submerged macrophytes remediation is a commonly used technique for improving water quality and restoring habitat in aquatic ecosystems. However, the drivers of success in the submerged macrophytes assembly process and their specific impacts on methane emissions are poorly understood. Thus, we conducted a mesocosm experiment to test the growth plasticity and carbon fixation of widespread submerged macrophytes (Vallisneria natans) under different nutrient conditions.

View Article and Find Full Text PDF

Enhancing proton storage in the zinc-ion battery cathode material of MnO holds promise in promoting its electrochemical performance by mitigating the intense Coulombic interaction between divalent zinc ions and the host structure. However, challenges persist in addressing the structural instability caused by Jahn-Teller effects and accurately modulating H intercalation in MnO. Herein, the doping of high-electronegativity Sb with fully occupied d-orbital in MnO is reported.

View Article and Find Full Text PDF

Universal and equitable access to affordable safely managed drinking water (SMDW) is a significant challenge and is highlighted by the United Nations' Sustainable Development Goals-6.1. However, SMDW coverage by 2030 is estimated to reach only 81% of the global population.

View Article and Find Full Text PDF
Article Synopsis
  • Changing surface wettability and texture can significantly affect lubrication performance.
  • Researchers used molecular dynamics to study how the interaction between alkanes and wall surfaces impacts oil film structure and friction under boundary lubrication.
  • Findings suggest that a combination of super oleophilic textured surfaces and super oleophobic smooth surfaces can improve oil film stability and reduce friction in mechanical systems.
View Article and Find Full Text PDF

The potential ecological risk of per- and polyfluorinated alkyl substances (PFASs) in phytoremediation has raised social concerns, promoting a need to better understand their distribution and risks in the recovery process of aquatic plants. Herein, we aim to fill this knowledge gap by investigating the distribution and ecotoxicological effects of PFASs on the structure and function of water-macrophyte-sediment microcosm systems. Among the entire system, 63.

View Article and Find Full Text PDF

Microbial manganese (Mn) oxidation, predominantly occurs within the anaerobic-aerobic interfaces, plays an important role in environmental pollution remediation. The anaerobic-aerobic transition zones, notably riparian and lakeside zones, are hotspots for algae-bacteria interactions. Here, we adopted a Mn(II)-oxidizing bacterium Pseudomonas sp.

View Article and Find Full Text PDF
Article Synopsis
  • A new rootchip system was developed to study the role of reactive oxygen species (ROS) in degrading pollutants in the rhizosphere of Iris tectorum, revealing significant contributions to the breakdown of beta-blockers like atenolol.
  • Mass balance analysis showed that ROS were responsible for a substantial percentage of rhizodegradation, with atenolol being transformed into less toxic products during phytoremediation.
  • Experiments indicated that the concentration of ROS was highest in the rhizosphere around the roots, influenced by the local chemistry and microbiome, providing insights for improving phytoremediation techniques.
View Article and Find Full Text PDF

Exploring the vast extraterrestrial space is an inevitable trend with continuous human development. Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future. Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched.

View Article and Find Full Text PDF

A large amount of sludge is inevitably produced during sewage treatment. Ultrasonication (US) as anaerobic digestion (AD) pretreatment was implemented on different sludges and its effects on batch and semi-continuous AD performance were investigated. US was effective in sludge SCOD increase, size decrease, and CH production in the subsequent AD, and these effects were enhanced with an elevated specific energy input.

View Article and Find Full Text PDF
Article Synopsis
  • The increasing demand for recycling industrial wastewater has highlighted the challenges of processing stable oil-in-water (O/W) emulsions, which contain surfactants and salts that complicate separation.
  • A novel flow-through electrode-based demulsification reactor (FEDR) was developed, achieving a 92.8% chemical oxygen demand (COD) removal rate, significantly higher than traditional methods (53.7% for electrical demulsification and 80.3% for filtration).
  • The efficiency of the FEDR system is influenced by the pore size of the electrode and the applied voltage, with the mechanism involving oil droplet accumulation and coalescence on the electrode surface enhancing the separation process for effective oil recovery and water purification.
View Article and Find Full Text PDF

Owing to the persistence and increasingly stringent regulations of perfluoroalkyl substances (PFAS), it is necessary to improve their adsorption capacities using activated carbon (AC). However, their adsorption capacities are suppressed by dissolved organic matter (DOM). In this study, two ACs modified with organic silicon (C-OS) and inorganic silicon (C-IS) were synthesized and used for the adsorption of PFAS in raw water (RW).

View Article and Find Full Text PDF

The effect of aqueous solution chemistry on the ionic hydration structure and its corresponding nanofiltration (NF) selectivity is a research gap concerning ion-selective transport. In this study, the hydration distribution of two typical monovalent anions (Cl and NO) under different aqueous solution chemical conditions and the corresponding transmembrane selectivity during NF were investigated by using liquid time-of-flight secondary ion mass spectrometry in combination with molecular dynamics simulations. We demonstrate the inextricable link between the ion hydration structure and the pore steric effect and further find that ionic transmembrane transport can be regulated by breaking the balance between the hydrogen bond network (i.

View Article and Find Full Text PDF