Publications by authors named "Chahat"

Alzheimer's Disease (AD) is a serious neurodegenerative condition that predominantly impacts the cholinergic neurons of the entorhinal cortex and hippocampal regions, playing a critical role in learning, navigation, and brain processing. This paper aims to discuss the three main hypotheses of Alzheimer's disease, focusing on neurotoxicity and neurodegeneration caused by mitochondrial dysfunction and ROS production, particularly analyzing the susceptibility differences between genders. Our comprehensive review focuses on significant findings from the past five years, particularly on Cholinesterase (ChE) and BACE-1 inhibitors.

View Article and Find Full Text PDF

Globally, among numerous cancer subtypes, breast cancer (BC) is one of the most prevalent forms of cancer affecting the female population. A female's family history significantly increases her risk of developing breast cancer. BC is caused by aberrant breast cells that proliferate and develop into tumors.

View Article and Find Full Text PDF

The era following the separation of CMB photons from matter, until the emergence of the first stars and galaxies, is known as the Cosmic Dark Ages. Studying the electromagnetic radiation emitted by neutral hydrogen having the 21 cm rest wavelength is the only way to explore this significant phase in the Universe's history, offering opportunities to investigate essential questions about dark matter physics, the standard cosmological model and inflation. Due to cosmological redshift, this signal is now only observable at frequencies inaccessible from the Earth's surface due to ionospheric absorption and reflection.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a devastating neurodegenerative condition that mostly damages dopaminergic neurons in the substantia nigra and impairs human motor function. Males are more likely than females to have PD. There are two main pathways associated with PD: one involves the misfolding of α-synuclein, which causes neurodegeneration, and the other is the catalytic oxidation of dopamine via MAO-B, which produces hydrogen peroxide that can cause mitochondrial damage.

View Article and Find Full Text PDF

Breast carcinoma is among the most frequent cancerous tumour in females around the globe. The major modalities now employed in the therapeutic management of breast cancer include surgeries, chemotherapy, and specialized medicines. Despite their potential to help individuals' problems, they are also associated with many negative impacts.

View Article and Find Full Text PDF

Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates.

View Article and Find Full Text PDF

Cancer represents one of the world's biggest hazardous diseases. p53 is the uttermost researched tumour suppressor protein. It is commonly considered the "guardian of the genome," performing a critical function in genetic stability maintenance through controlling the cell cycle, programmed cell death, DNA repair, aging, and angiogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Self-trapping of excitons in low-dimensional metal halides, driven by strong electron-phonon coupling, shows promise for applications in optoelectronics and solid-state lighting.
  • The study focuses on the synthesis of ultrathin RbPbBr nanoplates, which exhibit broad emission across the visible to near-infrared spectrum with a long photoluminescence lifetime.
  • Unique properties such as low sound velocity and bulk moduli in these nanoplates indicate significant anharmonicity and a soft lattice structure, enhancing the effectiveness of broadband self-trapping exciton emissions.
View Article and Find Full Text PDF