Microporous glassy polymer membranes suffer from physical aging, which adversely affects their performance in the short time frame. We show that the aging propensity of a model microporous polymer, poly(1-trimethylsilyl-1-propyne) (PTMSP), can be effectively mitigated by blending with as little as 5 wt % porous polymer network (PPN) composed of triptycene and isatin. The aging behavior of these materials was monitored via N pure gas permeability measurements over the course of 3 weeks, showing a 14% decline in PTMSP blended with 5 wt % PPN vs a 41% decline in neat PTMSP.
View Article and Find Full Text PDFWhile the main thrust of quantum computing research in materials science is to accurately measure the classically intractable electron correlation effects due to Coulomb repulsion, designing optimal quantum algorithms for simpler problems with well-understood solutions is a useful tactic to advance our quantum "toolbox". With this in mind, we consider the quantum calculation of a periodic system's single-electron band structure over a path through reciprocal space. Previous efforts have used the Variational Quantum Eigensolver algorithm to solve the energy of each band, which involves numerically optimizing the parameters of a variational quantum circuit to minimize a cost function, constructed as the expectation value of a Hamiltonian operator.
View Article and Find Full Text PDFQuantum computers promise to revolutionize our ability to simulate molecules, and cloud-based hardware is becoming increasingly accessible to a wide body of researchers. Algorithms such as Quantum Phase Estimation and the Variational Quantum Eigensolver are being actively developed and demonstrated in small systems. However, extremely limited qubit count and low fidelity seriously limit useful applications, especially in the crystalline phase, where compact orbital bases are difficult to develop.
View Article and Find Full Text PDFDevelopment of quantum architectures during the last decade has inspired hybrid classical-quantum algorithms in physics and quantum chemistry that promise simulations of fermionic systems beyond the capability of modern classical computers, even before the era of quantum computing fully arrives. Strong research efforts have been recently made to obtain minimal depth quantum circuits which could accurately represent chemical systems. Here, we show that unprecedented methods used in quantum chemistry, designed to simulate molecules on quantum processors, can be extended to calculate properties of periodic solids.
View Article and Find Full Text PDFHalf metals are a peculiar class of ferromagnets that have a metallic density of states at the Fermi level in one spin channel and simultaneous semiconducting or insulating properties in the opposite one. Even though they are very desirable for spintronics applications, identification of robust half-metallic materials is by no means an easy task. Because their unusual electronic structures emerge from subtleties in the hybridization of the orbitals, there is no simple rule which permits to select a priori suitable candidate materials.
View Article and Find Full Text PDFPathologies associated with calcified tissue, such as osteoporosis, demand in vivo and/or in situ spectroscopic analysis to assess the role of chemical substitutions in the inorganic component. High energy X-ray or NMR spectroscopies are impractical or damaging in biomedical conditions. Low energy spectroscopies, such as IR and Raman techniques, are often the best alternative.
View Article and Find Full Text PDFThe topological properties of materials are, until now, associated with the features of their crystalline structure, although translational symmetry is not an explicit requirement of the topological phases. Recent studies of hopping models on random lattices have demonstrated that amorphous model systems show a nontrivial topology. Using calculations, we show that two-dimensional amorphous materials can also display topological insulator properties.
View Article and Find Full Text PDFWe have performed a systematic investigation of the nature of the nontrivial interface states in topological/normal insulator (TI/NI) heterostructures. On the basis of first principles and a recently developed scheme to construct ab initio effective Hamiltonian matrices from density functional theory calculations, we studied systems of realistic sizes with high accuracy and control over the relevant parameters such as TI and NI band alignment, NI gap, and spin-orbit coupling strength. Our results for IV-VI compounds show the interface gap tunability by appropriately controlling the NI thickness, which can be explored for device design.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2017
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
View Article and Find Full Text PDFWe discuss the application of the Agapito Curtarolo and Buongiorno Nardelli (ACBN0) pseudo-hybrid Hubbard density functional to several transition metal oxides. For simple binary metal oxides, ACBN0 is found to be a fast, reasonably accurate and parameter-free alternative to traditional DFT + U and hybrid exact exchange methods. In ACBN0, the Hubbard energy of DFT + U is calculated via the direct evaluation of the local Coulomb and exchange integrals in which the screening of the bare Coulomb potential is accounted for by a renormalization of the density matrix.
View Article and Find Full Text PDFThe growth of films of [H2B(pz)2]Fe(ii)(bpy) on Au(111) is characterized from the bilayer film to multilayer film regime. Scanning tunneling microscopy shows a transition from a well-ordered, uniform bilayer film to a poorly-ordered film at larger thicknesses. Previous local tunneling spectroscopy and conductance mapping in bilayer films permit the identification of coexisting molecular spin-states at all temperatures.
View Article and Find Full Text PDFTopological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures.
View Article and Find Full Text PDFUsing first-principles calculations we have studied the reactions of water over Ti-decorated C(60) in order to assess the possibility of using this system as a catalyst for water dissociation. Our results show that a single water molecule dissociates exothermically with a small energy barrier on a single Ti atom adsorbed on C(60). After dissociation, both H(+) and OH(-) ions bind strongly to the Ti atom, which serves as an effective reactive center that facilitates further water splitting.
View Article and Find Full Text PDFUsing calculations from first principles we show how specific interface modifications can lead to a fine-tuning of the doping and band alignment in epitaxial graphene on SiC. Upon different choices of dopants, we demonstrate that one can achieve a variation of the valence band offset between the graphene Dirac point and the valence band edge of SiC up to 1.5 eV.
View Article and Find Full Text PDFThe enormous potential of carbon nanotubes (CNTs) as primary components in electronic devices and NEMS necessitates the understanding and predicting of the effects of mechanical deformation on electron transport in CNTs. In principle, detailed atomic/electronic calculations can provide both the deformed configuration and the resulting electrical transport behavior of the CNT. However, the computational expense of these simulations limits the size of the CNTs that can be studied with this technique, and a direct analysis of CNTs of the dimension used in nanoelectronic devices seems prohibitive at the present.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2009
The versatility of carbon nanostructures makes them attractive as possible catalytic materials, as they can be synthesized in various shapes and chemically modified by doping, functionalization, and the creation of defects in the nanostructure. Recent research has shown how the properties of carbon nanostructures can be exploited to enhance the yield of chemical reactions such as the thermal decomposition of water (Kostov et al 2005 Phys. Rev.
View Article and Find Full Text PDFUsing calculations from first principles and the concept of layer polarization, we have elucidated the nanoscale organization and local polarization in ferroelectric thin films between metallic contacts. The profile of the local polarization for different film thicknesses unveils a peculiar spatial pattern of atomic layers with uncompensated dipoles in what was originally thought to be a ferroelectric domain. This effectively ferrielectric behavior is induced by the dominant roles of the interfaces at such reduced dimensionality and can be interpreted using a simple classical model where the latter are explicitly taken into account.
View Article and Find Full Text PDFAs part of an effort to understand the effect of confinement by porous carbons on chemical reactions, we have carried out density functional theory calculations on the rotational isomerization of three four-membered hydrocarbons: n-butane, 1-butene, and 1,3-butadiene. Our results show that the interactions with the carbon walls cause a dramatic change on the potential energy surface for pore sizes comparable to the molecular dimensions. The porous material enhances or hinders reactions depending on how similar is the shape of the transition state to the shape of the confining material.
View Article and Find Full Text PDFThe effect of metal-molecule coupling on electron transport is examined in the prototypical case of alkane chains sandwiched between gold contacts and bridged by either amine or thiol groups. The results show that end group functionalization plays a crucial role in controlling electron transport, and that the symmetries and spatial extent of orbitals near the Fermi level control the conductivity rather than the strength of the bonding. For amine/Au and thiol/Au junctions, a crossover in conductivity with increasing bias is predicted.
View Article and Find Full Text PDFAs part of an effort to understand the effect of confinement by porous carbons on chemical reactions, we have carried out density functional theory calculations on the unimolecular decomposition of formaldehyde within graphitic carbons. Our results show that the interactions with the carbon walls result in a lowering of the reaction barrier. For larger pores, there is also a shift of the equilibrium towards the formation of carbon monoxide and hydrogen at low temperatures.
View Article and Find Full Text PDFWe report the inclusion of electron-electron correlation in the calculation of transport properties within an ab initio scheme. A key step is the reformulation of Landauer's approach in terms of an effective transmittance for the interacting electron system. We apply this framework to analyze the effect of short-range interactions on Pt atomic wires and discuss the coherent and incoherent correction to the mean-field approach.
View Article and Find Full Text PDFNovel carbon nanotube-metal cluster structures are proposed as prototype systems for molecular recognition at the nanoscale. Ab initio calculations show that already the bare nanotube cluster system displays some specificity because the adsorption of ammonia on a carbon nanotube-Al cluster system is easily detected electrically, while diborane adsorption does not provide an electrical signature. Since there are well-established procedures for attaching molecular receptors to metal clusters, these results provide a "proof-of-principle" for the development of novel, high-specificity molecular sensors.
View Article and Find Full Text PDFWe study the electronic and transport properties of artificial Au atomic chains on a NiAl(110) surface template using state-of-the-art first principles calculations. Au chains display remarkable one-dimensional electronic properties that can be tuned by the selective adsorption of small molecules: a single CO group is shown to modulate the electronic wave functions, acting as a "chemical scissor" along the chain, to strongly modify the coherent transport properties of the system, and to help design one-dimensional nanodevices through artificial profiling of energy barriers.
View Article and Find Full Text PDFWe present a combined theoretical and experimental study of the ferromagnetic semiconductor (Ga,Mn)As which explains the remarkably large changes observed on low-temperature annealing. Careful control of the annealing conditions allows us to obtain samples with ferromagnetic transition temperatures up to 159 K. Ab initio calculations, in situ Auger spectroscopy, and resistivity measurements during annealing show that the observed changes are due to out diffusion of Mn interstitials towards the surface, governed by an energy barrier of 0.
View Article and Find Full Text PDFThe dynamic conductance of carbon nanotubes was investigated using the nonequilibrium Green's function formalism within the context of a tight-binding model. Specifically, we have studied the ac response of tubes of different helicities, both with and without defects, and an electronic heterojunction. Because of the induced displacement currents, the dynamic conductance of the nanotubes differs significantly from the dc conductance displaying both capacitive and inductive responses.
View Article and Find Full Text PDF