Publications by authors named "BAROIS"

We present a locomotion mechanism that uses the stick-slip transition of a soft passive structure with an internal mechanical resonance. The structure is harmonically driven by a global vertical shaking and, because of its resonance dephasing and the threshold response of stick-slip transition, it can either move forward or backward. We establish a relation for the motion acceleration threshold that we experimentally validate.

View Article and Find Full Text PDF

Food Systems and One Health are two approaches increasingly known for the holistic perspective they bring when addressing the issues that concern them: food and health. This systematic literature review aims to explore the evidence for using these approaches in a concerted manner to better manage zoonoses. By zoonoses management, we refer to improving the ability to address current zoonoses as well as preventing future ones.

View Article and Find Full Text PDF

Optical metasurfaces are two-dimensional assemblies of nanoscale optical resonators and could constitute the next generation of ultrathin optical components. The development of methods to manufacture these nanostructures on a large scale is still a challenge, while most performance demonstrations were obtained with lithographically fabricated metasurfaces that are restricted to small scales. Self-assembly fabrication routes are promising alternatives and have been used to produce original nanoresonators.

View Article and Find Full Text PDF

Background: Triple-Negative Breast Cancer is particularly aggressive, and its metastasis to the brain has a significant psychological impact on patients' quality of life, in addition to reducing survival. The development of brain metastases is particularly harmful in triple-negative breast cancer (TNBC). To date, the mechanisms that induce brain metastasis in TNBC are poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • A highly contagious bacterium causes whooping cough (pertussis) and continues to spread despite widespread vaccination efforts.
  • The study focused on the use of self-renewing MPI cells, which are similar to lung macrophages, to investigate how these cells respond to the bacterium's infection, particularly their inflammatory reactions.
  • Key findings revealed that under infection conditions, MPI cells produce pro-inflammatory cytokines and exhibit parallel regulation of inflammatory responses by STAT proteins, thereby providing insights into the immune response without relying heavily on animal testing.
View Article and Find Full Text PDF

Despite the introduction of effective treatments for hepatitis C in clinics, issues remain regarding the liver disease induced by chronic hepatitis C virus (HCV) infection. HCV is known to disturb the metabolism of infected cells, especially lipid metabolism and redox balance, but the mechanisms leading to HCV-induced pathogenesis are still poorly understood. In an APEX2-based proximity biotinylation screen, we identified ACBD5, a peroxisome membrane protein, as located in the vicinity of HCV replication complexes.

View Article and Find Full Text PDF

Microelectrode Arrays (MEAs) are popular tools for in vitro extracellular recording. They are often optimized by surface engineering to improve affinity with neurons and guarantee higher recording quality and stability. Recently, PEDOT:PSS has been used to coat microelectrodes due to its good biocompatibility and low impedance, which enhances neural coupling.

View Article and Find Full Text PDF

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement.

View Article and Find Full Text PDF

Recently, the development of electronic devices to extracellularly record the simultaneous electrical activities of numerous neurons has been blooming, opening new possibilities to interface and decode neuronal activity. In this work, we tested how the use of EDOT electropolymerization to tune post-fabrication materials could optimize the cell/electrode interface of such devices. Our results showed an improved signal-to-noise ratio, better biocompatibility, and a higher number of neurons detected in comparison with gold electrodes.

View Article and Find Full Text PDF

Context: Laryngoscopy is frequently required in neonatal intensive care. Awake laryngoscopy has deleterious effects but practice remains heterogeneous regarding premedication use. The goal of this statement was to provide evidence-based good practice guidance for clinicians regarding premedication before tracheal intubation, less invasive surfactant administration (LISA) and laryngeal mask insertion in neonates.

View Article and Find Full Text PDF

Microbial agents have promise for the bioremediation of Pb(II)-polluted environments and wastewater, the biodecontamination of foods, and the alleviation of toxicity in living organisms. The dairy bacterium Propionibacterium freudenreichii is poorly able to remove Pb(II) from aqueous solution at 25 ppm, ranging from 0 to 10% of initial concentration. Here, we report on an original strong enhancement of this activity (ranging from 75% to 93%, p < 0.

View Article and Find Full Text PDF

The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer's disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration.

View Article and Find Full Text PDF

Producing ultrathin light absorber layers is attractive towards the integration of lightweight planar components in electronic, photonic, and sensor devices. In this work, we report the experimental demonstration of a thin gold (Au) metallic metasurface with near-perfect visible absorption (∼95 %). Au nanoresonators possessing heights from 5 - 15 nm with sub-50 nm diameters were engineered by block copolymer (BCP) templating.

View Article and Find Full Text PDF

A rectangular thin elastic sheet is deformed by forcing a contact between two points at the middle of its length. A transition to buckling with stress focusing is reported for the sheets sufficiently narrow with a critical width proportional to the sheet length with an exponent 2/3 in the small thickness limit. Additionally, a spring network model is solved to explore the thick sheet limit and to validate the scaling behavior of the transition in the thin sheet limit.

View Article and Find Full Text PDF

A swarm of simple active particles confined in a flexible scaffold is a promising system to make mobile and deformable superstructures. These soft structures can perform tasks that are difficult to carry out for monolithic robots because they can infiltrate narrow spaces, smaller than their size, and move around obstacles. To achieve such tasks, the origin of the forces the superstructures develop, how they can be guided, and the effects of external environment, especially geometry and the presence of obstacles, need to be understood.

View Article and Find Full Text PDF

A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie-resonant core-shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiON) shell of an adjustable thickness.

View Article and Find Full Text PDF

The design and chemical synthesis of plasmonic nanoresonators exhibiting a strong magnetic response in the visible is a key requirement to the realization of efficient functional and self-assembled metamaterials. However, novel applications like Huygens' metasurfaces or mu-near-zero materials require stronger magnetic responses than those currently reported. Our numerical simulations demonstrate that the specific dodecahedral morphology, whereby 12 silver satellites are located on the faces of a nanosized dielectric dodecahedron, provides sufficiently large electric and magnetic dipolar and quadrupolar responses that interfere to produce so-called generalized Huygens' sources, fulfilling the generalized Kerker condition.

View Article and Find Full Text PDF

Objectives: Altitude integrates changes in environmental conditions that determine shifts in vegetation, including temperature, precipitation, solar radiation and edaphogenetic processes. In turn, vegetation alters soil biophysical properties through litter input, root growth, microbial and macrofaunal interactions. The belowground traits of plant communities modify soil processes in different ways, but it is not known how root traits influence soil biota at the community level.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) life cycle is a tightly regulated process, during which structural and non-structural proteins cooperate. However, the interplay between HCV proteins during genomic RNA replication and progeny virion assembly is not completely understood. Here, we studied the dynamics and intracellular localization of non-structural 5A protein (NS5A), which is a protein involved both in genome replication and encapsidation.

View Article and Find Full Text PDF

Apicomplexan parasites have evolved efficient and distinctive strategies for intracellular replication where the timing of emergence of the daughter cells (budding) is a decisive element. However, the molecular mechanisms that provide the proper timing of parasite budding remain unknown. Using Toxoplasma gondii as a model Apicomplexan, we identified a master regulator that controls the timing of the budding process.

View Article and Find Full Text PDF

The dynamics of self-propelled particles with curved trajectories is investigated. Two modes are observed, a bulk mode with a quasicircular motion and a surface mode with the particles following the walls. The surface mode is the only mode of ballistic transport and the particle current is polar and depends on the particles' chirality.

View Article and Find Full Text PDF
Article Synopsis
  • Existing nanocolloidal optical resonators face challenges like complicated synthesis methods and limited tunability, especially in synchronizing electric and magnetic resonances necessary for Huygens scatterers.
  • The study introduces a new method for synthesizing clusters of gold nanoparticles using an emulsion-based approach, which achieves better structural control and production volume.
  • Experimental results indicate that these clusters demonstrate strong optical magnetic resonances and can be fine-tuned by altering their internal structure, making them promising candidates for Huygens metasurfaces.
View Article and Find Full Text PDF

In the field of functional nanomaterials, core-satellite nanoclusters have recently elicited great interest due to their unique optoelectronic properties. However, core-satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography.

View Article and Find Full Text PDF

Toxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses.

View Article and Find Full Text PDF

Background: Clinical symptoms of multiple sclerosis (MS) are variable and may include cognitive impairment, which can be assessed with the verbal fluency test (VFT). This test is evaluated by counting words spoken during a 2-min period, which is not a functional approach.

Objective: The objectives of this observational study were to: (1) determine new parameters that reflect communication and cognitive functions in persons with multiple sclerosis (PwMS) considering the evaluation of real-time word production in the VFT; (2) compare the results with those of a control group; and (3) evaluate the impact of including errors.

View Article and Find Full Text PDF