Publications by authors named "İrem Demir"

Viruses represent a diverse pool of obligate parasites that infect virtually every known organism, as such, their study is incredibly valuable for a range of fields including public health, medicine, agriculture, and ecology, and the development of biomedical technologies. Having evolved over millions of years, each virus has a unique and often complicated biology, that must be characterized on a case-by-case basis, even between strains of the same taxon. Owing to its nanoscale spatial resolution, atomic force microscopy (AFM) represents a powerful tool for exploring virus biology, including structural features, kinetics of binding to host cell ligands, virion self-assembly, and budding behaviors.

View Article and Find Full Text PDF

Background: Various cell-free scaffolds are already in use for the treatment of osteochondral defects (OCDs); however, a gold standard material has not yet been defined.

Purpose: This study compared the macroscopic, histological, and scanning electron microscopy (SEM) characteristics of Chondro-Gide (CG), MaioRegen (MA), and poly-d,l-lactide-co-caprolactone (PLCL) cell-free scaffolds enhanced with small-diameter microfractures (SDMs) for OCDs in a rabbit model.

Study Design: Controlled laboratory study.

View Article and Find Full Text PDF

Objective: Are reported in the cervix in the female genital tract, has been reported in very few studies in the literature. In this report, we aimed to present a case with mesonephric carcinoma, which was detected in the ovary and is very rarely seen.

Case Report: In a case since the frozen section results of the left adnexal mass were reported as malignant.

View Article and Find Full Text PDF

Understanding the molecular mechanisms underlying bubble-(bio)surfaces interactions is currently a challenge that if overcame, would allow to understand and control the various processes in which they are involved. Atomic force microscopy is a useful technique to measure such interactions, but it is limited by the large size and instability of the bubbles that it can use, attached either on cantilevers or on surfaces. We here present new developments where microsized and stable bubbles are produced using FluidFM technology, which combines AFM and microfluidics.

View Article and Find Full Text PDF

Microalgae are a promising resource for biofuel production, although their industrial use is limited by the lack of effective harvesting techniques. Flocculation consists in the aggregation and adhesion of cells into flocs that can be more easily removed from water than individual cells. Although it is an efficient harvesting technique, contamination is a major issue as chemical flocculants are often used.

View Article and Find Full Text PDF

In microalgae harvesting, flocculation is usually a compulsory preliminary step to further separation by sedimentation or flotation. For some microalgae species, and under certain growth conditions, flocculation can occur naturally. Natural flocculation presents many advantages as it does not require the addition of any flocculants to the culture medium and shows high efficiency rate.

View Article and Find Full Text PDF

Double-promoter expression system (DPES) design as de novo metabolic engineering strategy enables fine-tuned and enhanced gene expression. We constructed a collection of monodirectional hybrid-architectured DPESs with engineered promoter variants P and P and with the naturally occurring promoter P to enhance and upregulate-deregulated gene expressions in Pichia pastoris in methanol-free media. Reporter red fluorescent protein (mApple) and enhanced green fluorescent protein (eGFP) were expressed under P and P or P, respectively, enabling the determination of the transcription period and strength of each constituent in the DPESs.

View Article and Find Full Text PDF

Engineered promoters are key components in the cell-factory design, allowing precise and enhanced expression of genes. Promoters having exceptional strength are attractive candidates for designing metabolic engineering strategies for tailoring de novo production strategies that require directed evolution methods by engineering with de novo synthetic biology tools. Here, the custom-designed AOX1 hybrid-promoter architectures in coordination with targeted transcription factors are shown, transcriptionally rewired the expression over methanol-free substrate-utilization pathway(s) and converted methanol-dependent Pichia pastoris alcohol oxidase 1(AOX1) promoter (P ) expression into a non-toxic carbon-source-regulated system.

View Article and Find Full Text PDF

Analysis of RNA structuromes provides new insights into cellular processes, enabling systems biology and biotechnology researchers to calculate promoter and terminator strengths and to directly observe how differing circuit states impact host gene expression and the burdens imposed by the circuits. Such analysis, however, is crucially dependent on the availability of highly pure, intact RNA isolated from fresh or frozen cell cultures. RNA extraction from the yeast Pichia pastoris requires specific pretreatment steps to ensure the reproducibility of downstream applications, but current methods and extraction kits are generally adapted for the conventional yeast Saccharomyces cerevisiae, which has a different cell wall composition.

View Article and Find Full Text PDF